Answer:
sec squared 55 – tan squared 55 = 1
Step-by-step explanation:
Given, sec square 55 – tan squared 55
We know that,
![\sec \Theta=\frac{\text {hypotenuse}}{\text {base}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/weeoff4f7iftrx4s3vzgkp4f9hp8ia903r.png)
And,
![\tan \theta=\frac{\text { perpendicular }}{\text { base }}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lvc9m0uq44fv1o5ungxtfd1o7obd1lvdhf.png)
where Ө is the angle
Substituting the values
![\left(\frac{\text {hypotenuse}}{\text {base}}\right)^(2)-\left(\frac{\text { perpendicular }}{\text {base}}\right)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/umrzg5268fg2w5deq0gq1m2gnrxf7na4c5.png)
Solving,
![\frac{(\text {hypotenuse})^(2)-(\text {perpendicular})^(2)}{(\text {base}) *(\text {base})}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oc3jwyedg2ff3xbd1d1ah3loetl47rh0bv.png)
According to Pythagoras theorem,
![\text { (hypotenuse) }^(2)-\text { (perpendicular) }^(2)=(\text { base })^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qju4bud3anqnbbn21b5o2s640ieeehczuc.png)
Putting this in the equation;
squared 55 - tan squared 55 =
![\frac{(\text {hypotenuse})^(2)-(\text {perpendicular})^(2)}{(\text {base}) *(\text {base})}=\frac{(\text {base})^(2)}{(\text {base}) *(\text {base})}=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hq3iqxqxbcscqa435yw86zzv6zl09uqy3l.png)
Therefore, sec squared 55 – tan squared 55 = 1