Answer:
x = 36
Explanation:
![x - 12√(x) + 36 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ina1qvaji6ydsul9b5ppgu5036elj4bzx6.png)
Subtract x and 36 from both sides.
![-12√(x) = -x - 36](https://img.qammunity.org/2020/formulas/mathematics/high-school/nehfza6ypzvmjoj7h80jyp2r9f7lscv65d.png)
Divide both sides by -1.
![12√(x) = x + 36](https://img.qammunity.org/2020/formulas/mathematics/high-school/rxuhsxks04kgt1c90fhl3jn2zpbx74u4yl.png)
Square both sides.
![144x = x^2 + 72x + 1296](https://img.qammunity.org/2020/formulas/mathematics/high-school/vtqr311qvvakm4l3eoie7iexfqruxd0vwg.png)
Subtract 144x from both sides.
![0 = x^2 - 72x + 1296](https://img.qammunity.org/2020/formulas/mathematics/high-school/s6a5ent554nr252407u95hssklevo9c5gk.png)
Factor the right side.
![0 = (x - 36)^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/nw7k1jlapzbgglql4ub6e6o2ay5cd2of6c.png)
![x - 36 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/av9d292az3gd10t9cddu85iu9zvx325s4l.png)
![x = 36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3syujvj6k1z3u67ac5h95emdr2vfqmmiun.png)
Since the solution of the equation involved squaring both sides, we musty check the answer for possible extraneous solutions.
Check x = 36:
![x - 12√(x) + 36 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ina1qvaji6ydsul9b5ppgu5036elj4bzx6.png)
![36 - 12√(36) + 36 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/8kqa7qr6rcomsppi07xchsqtjut2zjxizu.png)
![36 - 12* 6 + 36 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/fdu1bcfs6nvri0zoc2yb0hedbevz0zqnk9.png)
![36 - 72 + 36 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/tx328txxatfplo3ile1l0ba81mkorjch6q.png)
![0 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fp5nbjhnjrwzniwcuh0zi9v8382zulvs2b.png)
Since 0 = 0 is a true statement, the solution x = 36 is a valid solution.