To solve this problem it is necessary to apply the concepts related to the geometry of a cylindrical tank and its respective definition.
The volume of a tank is given by
![V = (\pi d^2)/(4)h](https://img.qammunity.org/2020/formulas/physics/college/kcmasjna1i7foszox5qcheqonalw613z0k.png)
Where
d = Diameter
h = Height
Considering that there are two stages, let's define the initial and final volume as,
![V_0 = (\pi d^2)/(4)H](https://img.qammunity.org/2020/formulas/physics/college/qatklcu6qn01vbgbul73uzb9ydnis03123.png)
![V_f = (\pi d^2)/(4)h](https://img.qammunity.org/2020/formulas/physics/college/mknax25jko5e6wp2wt95f45vwneq0mxl0j.png)
We know as well by definition that
![1gal = 3.785*10^(-3)m^3](https://img.qammunity.org/2020/formulas/physics/college/8uljcb3csobvymj1a01z3c24nbk2o81tc2.png)
Then we have for the statement that
![V_f = V_0 -1gal](https://img.qammunity.org/2020/formulas/physics/college/42w64cxmnx2naf6q459qzcjl0ehse3o3u2.png)
![V_f = V_0 - 3.785*10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/m8puuff8ezk6j3tsdvhr5s5ghk00ha45sk.png)
Replacing the previous data
![(\pi d^2)/(4)h = (\pi d^2)/(4)H- 3.785*10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/pvxyfi0v4ktz9cqmximyejkcpqrb9x10p9.png)
![(\pi (3.6)^2)/(4)h = (\pi (3.6)^2)/(4)(2)- 3.785*10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/psy9u1tezhh9vokkepxiob342ym8ba2mv9.png)
Solving to get h,
![h = 1.99963m](https://img.qammunity.org/2020/formulas/physics/college/u07k1qqoozqtftyh1vi3zcl8oq5lui0ae5.png)
Therefore the change is
![\Delta h = H-h](https://img.qammunity.org/2020/formulas/physics/college/895wcxy7op8uxdiorsbs00sf8528tmgxu1.png)
![\Delta h = 2- 1.99963](https://img.qammunity.org/2020/formulas/physics/college/ynqsiiiyg656rkxy81kjc9to8vnmdcphl1.png)
![\Delta h = 3.7*10^(-4)m=0.37mm](https://img.qammunity.org/2020/formulas/physics/college/i2hpb7h3fbmqgm51ont7i4uh1f3lhm9dwm.png)
Therefore te change in the height of the water in the tank is 0.37mm