To solve this problem it is necessary to apply the concepts related to gravitational potential energy.
The change in gravitational potential energy is given by,
![\Delta PE = PE_f - PE_i](https://img.qammunity.org/2020/formulas/physics/college/1mxesbuf0xh7ps2ig1mjo6xl79rrky4r2b.png)
Where,
![PE = (GMm)/(R)](https://img.qammunity.org/2020/formulas/physics/college/b6buoj3j4fivh7mm3l9iflzgs1sly6ho7t.png)
Here,
G = Gravitational Universal Constant
M = Mass of Earth
m = Mass of Object
R = Radius
Replacing we have that
![\Delta PE = (GMm)/(R+h) -(GMm)/(R)](https://img.qammunity.org/2020/formulas/physics/college/p1g46w9pm5r8x2wya9usi6utnjgun0i649.png)
Note that h is the height for this object. Then replacing with our values we have,
![\Delta PE = (GMm)/(R+h) -(GMm)/(R)](https://img.qammunity.org/2020/formulas/physics/college/p1g46w9pm5r8x2wya9usi6utnjgun0i649.png)
![\Delta PE = GMm((1)/(R) -(1)/(R+h))](https://img.qammunity.org/2020/formulas/physics/college/i8qatn9aiav5up53wxaqn8tdiuaxv6espe.png)
![\Delta PE = (6.65*10^(-11))(7.36*10^(22))(1170)((1)/(1740*10^3) -(1)/(211*10^3+1740*10^3))](https://img.qammunity.org/2020/formulas/physics/college/4cglpjihk8mnma39geibhzsnj199kdzt21.png)
![\Delta PE = 57264.48*10^(11)(5.1255*10^(-7)-5.747*10^(-7))](https://img.qammunity.org/2020/formulas/physics/college/m6lj47n8icdwje8uikeg2as2e6lfianx8o.png)
![\Delta PE = 3.56*10^8J](https://img.qammunity.org/2020/formulas/physics/college/23lybvhnzxo6k7kohei1vw9vlhd1e7praz.png)
Therefore the gravitational potential is
![3.56*10^8J](https://img.qammunity.org/2020/formulas/physics/college/rchrn4lysnwucjpgx4cam29nimz4c5i0ps.png)