Answer: 10
Explanation:
We know that the formula to find the sample size is given by :-
![n= ((z_(\alpha/2\cdot \sigma))/(E))^2](https://img.qammunity.org/2020/formulas/mathematics/college/tzvk2bceevgtab5w3xn2govi9bndky4xko.png)
, where
= population standard deviation.
= Two -tailed z-value for
(significance level)
E= margin of error.
Given : Confidence level : C =99%=0.99
i.e.
![1-\alpha=0.99](https://img.qammunity.org/2020/formulas/mathematics/college/haburrexespugzv14wl9v340j9t5eb92m8.png)
⇒Significance level :
![\alpha=1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/hw7rszmzf85gg8hr51vodzmidxo6k6eals.png)
By using z-value table ,Two -tailed z-value for
:
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
E= 2 minutes
![\sigma=\text{2.4 minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/r86yu2i25qd0l435ty788bxu5ok4zqj3wr.png)
The required sample size will be :-
![n= ((2.576\cdot 2.4)/(2))^2\\\\= (3.0912)^2\\\\=9.55551744\approx10](https://img.qammunity.org/2020/formulas/mathematics/college/fdwobyw9t0qu1usi6dj2f0t8soti5fwvfz.png)
Hence, the required sample size = 10