a.
![f_(X,Y,Z)(x,y,z)=\begin{cases}Ce^(-(0.5x+0.2y+0.1z))&\text{for }x\ge0,y\ge0,z\ge0\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2020/formulas/mathematics/college/yj8e35qo8u32pdo4gviqnk4o1216bbxo1e.png)
is a proper joint density function if, over its support,
is non-negative and the integral of
is 1. The first condition is easily met as long as
. To meet the second condition, we require
![\displaystyle\int_0^\infty\int_0^\infty\int_0^\infty f_(X,Y,Z)(x,y,z)\,\mathrm dx\,\mathrm dy\,\mathrm dz=100C=1\implies \boxed{C=0.01}](https://img.qammunity.org/2020/formulas/mathematics/college/q09sdrilyyxrv4goone6iz43e2jbfdwt9q.png)
b. Find the marginal joint density of
and
by integrating the joint density with respect to
:
![f_(X,Y)(x,y)=\displaystyle\int_0^\infty f_(X,Y,Z)(x,y,z)\,\mathrm dz=0.01e^(-(0.5x+0.2y))\int_0^\infty e^(-0.1z)\,\mathrm dz](https://img.qammunity.org/2020/formulas/mathematics/college/inznzr5hk1oksl3d0aonra29du3id48sl5.png)
![\implies f_(X,Y)(x,y)=\begin{cases}0.1e^(-(0.5x+0.2y))&\text{for }x\ge0,y\ge0\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2020/formulas/mathematics/college/nxqjlj3utx90s846w1xuweim5ojfngq20f.png)
Then
![\displaystyle P(X\le1.375,Y\le1.5)=\int_0^(1.5)\int_0^(1.375)f_(X,Y)(x,y)\,\mathrm dx\,\mathrm dy](https://img.qammunity.org/2020/formulas/mathematics/college/r6ey7sgyia78bg0lccy7gvg7txxts7803d.png)
![\approx\boxed{0.12886}](https://img.qammunity.org/2020/formulas/mathematics/college/oi9ozg56s1tcycwc1lcgyffjxi5lylzvgv.png)
c. This probability can be found by simply integrating the joint density:
![\displaystyle P(X\le1.375,Y\le1.5,Z\le1)=\int_0^1\int_0^(1.5)\int_0^(1.375)f_(X,Y,Z)(x,y,z)\,\mathrm dx\,\mathrm dy\,\mathrm dz](https://img.qammunity.org/2020/formulas/mathematics/college/t1btiqip3989w8oekz1bglwgvi2paddhlz.png)
![\approx\boxed{0.012262}](https://img.qammunity.org/2020/formulas/mathematics/college/v3zdem9o9c3e00ltlfwxbxpbwz5hylcjlq.png)