Answer:
(a)The balanced thermochemical equation for formation of 1.00 mol of glucose is:
![6 \mathrm{CO}_(2)+6 \mathrm{H}_(2) \mathrm{O} \longrightarrow \mathrm{C}_(6) \mathrm{H}_(12) \mathrm{O}_(6)+6 \mathrm{O}_(2)](https://img.qammunity.org/2020/formulas/chemistry/college/349kepu9kfo5llranjxpsg22vdktz1vtn7.png)
(b) The minimum number of photons with λ = 680 nm needed to prepare 1.00 mol of glucose is
![5.55 * 10^(37) \text { photons }](https://img.qammunity.org/2020/formulas/chemistry/college/9rntaeosi43fi8h10pnry7uft34urelnh3.png)
Step-by-step explanation:
(a) Both side of reaction have equal number of elements therefore number of reactant is equal to number of product hence following balanced equation is achieved :
![6 \mathrm{CO}_(2)+6 \mathrm{H}_(2) \mathrm{O} \longrightarrow \mathrm{C}_(6) \mathrm{H}_(12) \mathrm{O}_(6)+6 \mathrm{O}_(2)](https://img.qammunity.org/2020/formulas/chemistry/college/349kepu9kfo5llranjxpsg22vdktz1vtn7.png)
(b) According to theory of special relativity which expresses fact in equation about mass and energy is:
![\mathbf{E}=\mathbf{m} \mathbf{c}^(2) \text { and here } \mathrm{c}^(2) \text { is speed of light }](https://img.qammunity.org/2020/formulas/chemistry/college/bwgcf2ucsuee4xcb536jfa2ed69dodyroz.png)
Here λ = 680 nm,
![\mathrm{n}\left(\mathrm{C}_(6) \mathrm{H}_(12) \mathrm{O}_(6)\right)=1 \mathrm{mol}](https://img.qammunity.org/2020/formulas/chemistry/college/klmch38nq8m89d229yis0sdcxbv754fdfm.png)
Molar mass of glucose = 180.156 g/mol
![\text { Therefore } m=180.156 \mathrm{g}, \mathrm{c}=3 * 10^(8)](https://img.qammunity.org/2020/formulas/chemistry/college/x03zulkj1zi9n32yje5ou9zznkf3hbnga8.png)
Substituting values in above equation
![\mathrm{E}=180.156 *\left(3 * 10^(8)\right)^(2)=1.62 * 10^(29) \mathrm{J}](https://img.qammunity.org/2020/formulas/chemistry/college/4cdu6nw0pi9nbbr65elxj3qx7z42n4pbk2.png)
Hence it is known that
E (1 photon) = h × v
![v=(c)/(\lambda)](https://img.qammunity.org/2020/formulas/chemistry/college/c224jaewj8nlhq8tf31jgvpewonafeyf8a.png)
![v=(3 * 10^(8))/(6.5 * 10^(-7))](https://img.qammunity.org/2020/formulas/chemistry/college/2tuh64o4b9amwcyp5qs7crzcjmq1aja4a2.png)
![v=4.41 * 10^(14) \mathrm{s}^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/djjy4peirwa3pcs0cufqr52j5d5wuh1bc0.png)
![\text { Substituting values in } \mathrm{E}(1 \text { photon })=\mathrm{h} * v, \mathrm{h} \text { is Planck constant }=6.626 * 10^(-34) \mathrm{J} \mathrm{s}](https://img.qammunity.org/2020/formulas/chemistry/college/7cpbqirgvj4za7g3cz32o98ehpxwwkkqpa.png)
![\mathrm{E}(1 \text { photon })=\left(6.626 * 10^(-34)\right) *\left(4.41 * 10^(14)\right)=2.92 * 10^(-19) \mathrm{J}](https://img.qammunity.org/2020/formulas/chemistry/college/r7y57sp1f22py9fa42mtrrznl8ryi7ruzh.png)
![\text { The minimum number of photons }=\frac{E}{\mathrm{E}(1 \text { photon })}](https://img.qammunity.org/2020/formulas/chemistry/college/f336e7xcuiey4hi3w8mso3psr4b2y4dd0y.png)
![\text { The minimum number of photons }=(1.62 * 10^(29))/(2.92 * 10^(-19))](https://img.qammunity.org/2020/formulas/chemistry/college/oi2fnaol13rj01b5ui7t4fatq1zbdye7dg.png)
![\text { Hence the minimum number of photons }=5.55 * 10^(37) \text { photons }](https://img.qammunity.org/2020/formulas/chemistry/college/8olmv7livesod4nolcde2c5yjrvbhxmd3f.png)