Answer:
The required probability is 0.55404.
Explanation:
Consider the provided information.
The number of typographical errors on a page of the first booklet is a Poisson random variable with mean 0.2. The number of typographical errors on a page of second booklet is a Poisson random variable with mean 0.3.
Average error for 7 pages booklet and 5 pages booklet series is:
λ = 0.2×7 + 0.3×5 = 2.9
According to Poisson distribution:
![{\displaystyle P(k{\text{ events in interval}})={\frac {\lambda ^(k)e^(-\lambda )}{k!}}}](https://img.qammunity.org/2020/formulas/mathematics/college/geon8n9vjmuqriredoytxvrwei5n3gu4ch.png)
Where
is average number of events.
The probability of more than 2 typographical errors in the two booklets in total is:
![P(k > 2)= 1 - {P(k = 0) + P(k = 1) + P(k = 2)}](https://img.qammunity.org/2020/formulas/mathematics/college/e9o7o6ma870jgowo38o9dbmj6cn1twtdka.png)
Substitute the respective values in the above formula.
![P(k > 2)= 1 - ({\frac {2.9 ^(0)e^(-2.9)}{0!}} + \frac {2.9 ^(1)e^(-2.9)}{1!}} + \frac {2.9 ^(2)e^(-2.9)}{2!}})](https://img.qammunity.org/2020/formulas/mathematics/college/89xyx8x6xwtrjsth7epn75w8bim5nsyln9.png)
![P(k > 2)= 1 - (0.44596)](https://img.qammunity.org/2020/formulas/mathematics/college/6ahjodx224ytdy2t3y6kaj06p1ekziiejy.png)
![P(k > 2)=0.55404](https://img.qammunity.org/2020/formulas/mathematics/college/anbo39bdj6fpoobon20nuxsoeo8efe1j64.png)
Hence, the required probability is 0.55404.