Answer:
Area = 2500 square feet is the largest area enclosed
Explanation:
A rectangular piece of land borders a wall. The land is to be enclosed and to be into divided 3 equal plots with 200 feet of fencing
Let x be the length of each box and y be the width of the box
Perimeter of the box= 3(length ) + 4(width)
![200=3x+4y](https://img.qammunity.org/2020/formulas/mathematics/high-school/8feav0sg9he7bla9yfmrl02f5j7pro8cqj.png)
solve for y
![200=3x+4y](https://img.qammunity.org/2020/formulas/mathematics/high-school/8feav0sg9he7bla9yfmrl02f5j7pro8cqj.png)
![200-3x=4y](https://img.qammunity.org/2020/formulas/mathematics/high-school/mq8m6adnvufqdfw2453j7x8jbxvvj3f17l.png)
divide both sides by 4
![y=50-(3x)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ng5xgxzbf5yjdgbvkvainevqhau734gugm.png)
Area of the rectangle = length times width
![Area = 3x \cdot y](https://img.qammunity.org/2020/formulas/mathematics/high-school/fdlppv1frv38l49rl4iqqsvtaphol09hkj.png)
![Area = 3x \cdot (50-(3x)/(4))](https://img.qammunity.org/2020/formulas/mathematics/high-school/6bccxvp97vrid5sd0bql03o4tloyh3vgah.png)
![A=150x-(9x^2)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pcdwz883r7apd94g0hcv6fcqzhqahaqlag.png)
Now take derivative
![A'=150-(9x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1a7wremj6ynnw1bq0c7gkytpfpedzg4621.png)
Set it =0 and solve for x
![0=150-(9x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/65qiei78ttaaehnwli87jzysg79eoqyb7a.png)
![150=(9x)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/54bagetyi5prj6hm6clzom0bd00hurpiat.png)
multiply both sides by 2/9
![x=(100)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lk5dhjmxwhf2bfibltx6bi1gkg66oimclc.png)
![A''=-(9)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6of4ajaibqv8l54xx3yngvwpuk0lsfp2lm.png)
For any value of x, second derivative is negative
So maximum at x= 100/3
, replace the value of x
![A=150((100)/(3))-(9((100)/(3))^2)/(4))](https://img.qammunity.org/2020/formulas/mathematics/high-school/mco44lx3aylv4l73hhzjexosc2buchvj9w.png)
Area = 2500 square feet is the largest area enclosed