To solve this problem it is necessary to resort to the energy conservation equations, both kinetic and electrical.
By Coulomb's law, electrical energy is defined as
![EE = (kq_1q_2)/(d)](https://img.qammunity.org/2020/formulas/physics/college/94vp562k2hrgjxfcjavvl7psjwv6bwzxu9.png)
Where,
EE = Electrostatic potential energy
q= charge
d = distance between the charged particles
k = Coulomb's law constant
While kinetic energy is defined as
![KE = (1)/(2) mv^2](https://img.qammunity.org/2020/formulas/physics/middle-school/nqpb4zv10p6n0v9hfkrt8okx0qe169pcpc.png)
Where,
m= mass
v = velocity
There by conservation of energy we have that
EE= KE
There is not Initial kinetic energy, then
![(kq_1q_2)/(d)-(kq_1q_2)/(d') = 2*(1)/(2)mv_f^2](https://img.qammunity.org/2020/formulas/physics/college/88354pn1fu84rvb1l60qieoz3pbeytc4ry.png)
![(kq_1q_2)/(d)-(kq_1q_2)/(d') = mv_f^2](https://img.qammunity.org/2020/formulas/physics/college/3q26hjo44e1aajq7v1s6gz3o8sxds7cej3.png)
![v_f^2= ((kq_1q_2)/(d)-(kq_1q_2)/(d') )/(m)](https://img.qammunity.org/2020/formulas/physics/college/80ov2dbbq62vqkhpiysmtd1eu4uap2hu1o.png)
![v_f = \sqrt{((kq_1q_2)/(d)-(kq_1q_2)/(d'))/(m)}](https://img.qammunity.org/2020/formulas/physics/college/w9nkqso6hh8wm4qypy3jrdwyllq4cgok53.png)
Replacing with our values we have,
![v_f = \sqrt{(((9*10^9)(12*10^(-6))(60*10^(-6)))/(1)-((9*10^9)(12*10^(-6))(60*10^(-6)))/(3))/(5.50*10^(-15))}](https://img.qammunity.org/2020/formulas/physics/college/es4q1yamsk04erie92iyosuzei6vcgg8rb.png)
![v_f = 2.802*10^7m/s](https://img.qammunity.org/2020/formulas/physics/college/a808wcdjx8berpc4dh8g69wwhn1ddtum5b.png)
Therefore the speed of particle B at the instat when the particles are 3m apart is
![2.802*10^7m/s](https://img.qammunity.org/2020/formulas/physics/college/eeimvkoj0cbw51fdtqvvhlbtmrlcfgh9r5.png)