Answer:
Confidence interval: (1760,1956)
Explanation:
We are given the following information in the question:
Sample size, n = 81
Sample mean =
![\bar{x} = 1858 \text{ kWh}](https://img.qammunity.org/2020/formulas/mathematics/college/nvmuf3cbuyd6au58lnult70f22sbm60qxe.png)
Population standard deviation =
![\sigma = 450 \text{ kilowatt-hours}](https://img.qammunity.org/2020/formulas/mathematics/college/neaeqvf84dcgvcxbygc0mr3gxj800xj7p3.png)
Confidence Level = 95%
Significance level = 5% = 0.05
Confidence interval:
![\bar{x} \pm z_(critical)\displaystyle(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/9gjy0tnor4m1e49m4h91huq0b6m3p5svld.png)
Putting the values, we get,
![z_(critical)\text{ at}~\alpha_(0.05) = \pm 1.96](https://img.qammunity.org/2020/formulas/mathematics/college/1n6i0tuzpp8yv38fdmtqbxv8kt5qs8up59.png)
![1858 \pm 1.96(\displaystyle(450)/(√(81)) ) = 1858 \pm 98 = (1760,1956)](https://img.qammunity.org/2020/formulas/mathematics/college/u6gjk6lq4h172z19nr62jlcj34kzr0089n.png)