To solve the problem it is necessary to apply the concepts related to the calculation of discharge flow, Bernoulli equations and energy conservation in incompressible fluids.
PART A) For the calculation of the velocity we define the area and the flow, thus
![A = \pi r^2](https://img.qammunity.org/2020/formulas/mathematics/college/cr8j38l09a4n3n5h6eay27m7d2yuucup99.png)
![A = pi (2*10^(-3))^2](https://img.qammunity.org/2020/formulas/physics/college/5j6ax89y8rs840u1sljurzmbhet53juxq6.png)
![A = 12.56*10^(-6)m^2](https://img.qammunity.org/2020/formulas/physics/college/4i2jzgr3l20hmqrm16nr28pt41du25nur6.png)
At the same time the rate of flow would be
![Q = (1L)/(2s)](https://img.qammunity.org/2020/formulas/physics/college/psspu1qiy2vtyvmijn1rgzvu4peozjy3l2.png)
![Q = 0.5L/s = 0.5*10^(-3)m^3/s](https://img.qammunity.org/2020/formulas/physics/college/junra7khpvr8rod1vf5qlskn06xg3ccih2.png)
By definition the discharge is expressed as
![Q = NAv](https://img.qammunity.org/2020/formulas/physics/college/8blbwx7xsqei1abjvousnxuk3488ne9cdg.png)
Where,
A= Area
v = velocity
N = Number of exits
Q = NAv
Re-arrange to find v,
![v = (Q)/(NA)](https://img.qammunity.org/2020/formulas/physics/college/1yc48i1v97f2ffkcefq9bg7c3673usmu8t.png)
![v = (0.5*10^(-3))/(44*12.56*10^(-6))](https://img.qammunity.org/2020/formulas/physics/college/r0mkkfiyjwocyz6znwnpce2toxqdaxs0lb.png)
![v = 0.9047m/s](https://img.qammunity.org/2020/formulas/physics/college/5ixj7dcjxigq3hvvqqus43thq3g1neqpb0.png)
PART B) From the continuity equations formulated by Bernoulli we can calculate the speed of water in the pipe
![P_1 + (1)/(2)\rho v_1^2+\rho gh_1 = P_2 +(1)/(2)\rho v^2_2 +\rho g h_2](https://img.qammunity.org/2020/formulas/physics/college/rlt6srh4alenalfdcdv1d01pz9s3lgo35e.png)
Replacing with our values we have that
![1.5*10^5 + (1)/(2)(1000) v_1^2+(1000)(9.8)(0) = 10^5 +(1)/(2)(1000)(0.9047)^2 +(1000)(9.8)(5.7)](https://img.qammunity.org/2020/formulas/physics/college/l9wex8gbdvd5cynbow3w78ijas55lq82fp.png)
![v_1^2 = 10^5 +(1)/(2)(1000)(0.9047)^2 +(1000)(9.8)(5.7)-1.5*10^5 - (1)/(2)(1000)](https://img.qammunity.org/2020/formulas/physics/college/oecxpii01647x6e8p79bdogqsxchjwrx6s.png)
![v_1 = \sqrt{10^5 +(1)/(2)(1000)(0.9047)^2 +(1000)(9.8)(5.7)-1.5*10^5 - (1)/(2)(1000)}](https://img.qammunity.org/2020/formulas/physics/college/60incnqu6ajpnm2ujsq0oukm31wsqecm79.png)
![v_1 = 3.54097m/s](https://img.qammunity.org/2020/formulas/physics/college/6zmkh1ux65k1wsvdirirziufas4xc4mrrm.png)
PART C) Assuming that water is an incomprehensible fluid we have to,
![Q_(pipe) = Q_(shower)](https://img.qammunity.org/2020/formulas/physics/college/89s2g7ow2i41dpdentzkkc29bd8f4p3g6k.png)
![v_(pipe)A_(pipe)=v_(shower)A_(shower)](https://img.qammunity.org/2020/formulas/physics/college/nv3ncwidfglesaxz595rrxex2zlynaj8m2.png)
![3.54097*A_(pipe)=0.9047*12.56*10^(-6)](https://img.qammunity.org/2020/formulas/physics/college/rck865sbh2xdb3fl989x2xx4h0vopgqngp.png)
![A_(pipe) = (0.9047*12.56*10^(-6))/(3.54097)](https://img.qammunity.org/2020/formulas/physics/college/3dpf2rc5scwghahmklmw1bkdu24eiexow6.png)
![A_{pipe = 3.209*10^(-6)m^2](https://img.qammunity.org/2020/formulas/physics/college/k712x55tzacjde7o3ne7z1fm9r4jvm9osi.png)