Answer:
(A) Angular speed 40 rad/sec
Rotation = 50 rad
(b) 37812.5 J
Step-by-step explanation:
We have given moment of inertia of the wheel
![I=25kgm^2](https://img.qammunity.org/2020/formulas/physics/college/n1o7lclpqt7hutxv2m38kpfku67nw4xfzh.png)
Initial angular velocity of the wheel
![\omega _0=10rad/sec](https://img.qammunity.org/2020/formulas/physics/college/uccb4yifvrcds3xp8dp0tz1tv2b6gp5xvk.png)
Angular acceleration
![\alpha =15rad/sec^2](https://img.qammunity.org/2020/formulas/physics/college/ja7f9g8w0rlg0gx0011i8vbtgdo4qiwmd4.png)
(a) We know that
![\omega =\omega _0+\alpha t](https://img.qammunity.org/2020/formulas/physics/high-school/estfxryk91lcyr7aqdyc71cfa6a3t0eigc.png)
We have given t = 2 sec
So
![\omega =10+15* 2=40rad/sec](https://img.qammunity.org/2020/formulas/physics/college/6j8shz834k7qsid78wfamnjdvimegyr3y5.png)
Now
![\Theta =\omega _0t+(1)/(2)\alpha t^2=10* 2+(1)/(2)* 15* 2^2=50rad](https://img.qammunity.org/2020/formulas/physics/college/acjb9yyilm894zxc0khwxkozgsr8h9r8sc.png)
(b) After 3 sec
![\omega =10+15* 3=55rad/sec](https://img.qammunity.org/2020/formulas/physics/college/hhkj2gfxw3s5m67jwofggsocvljhnnm3sp.png)
We know that kinetic energy is given by
![Ke=(1)/(2)I\omega ^2=(1)/(2)* 25* 55^2=37812.5J](https://img.qammunity.org/2020/formulas/physics/college/uvzi4dyazff8ysemfwutbypiy3gtv2kgq3.png)