Answer: 52
Explanation:
Formula for sample size:-
![n= ((z_(\alpha/2\cdot \sigma))/(E))^2](https://img.qammunity.org/2020/formulas/mathematics/college/tzvk2bceevgtab5w3xn2govi9bndky4xko.png)
, where
= population standard deviation.
= Two -tailed z-value for
(significance level)
E= margin of error.
Given : tex]\sigma=\text{ 0.30 ounce}[/tex]
⇒Significance level for 99.6% confidence level :
![\alpha=1-0.996=0.004](https://img.qammunity.org/2020/formulas/mathematics/college/bjtqqxw9j1thynp253y5ez2jccnrftd7wy.png)
By using z-value table ,Two -tailed z-value for
:
![z_(\alpha/2)=z_(0.002)=2.878](https://img.qammunity.org/2020/formulas/mathematics/college/vqnu6jladpmgd1714sj6oh452ztnkfxru0.png)
E= 0.12 ounces.
Minimum sample size will be :-
![n= ((2.878\cdot 0.30)/(0.12))^2\\\\= (7.195)^2\\\\=51.768025\approx52](https://img.qammunity.org/2020/formulas/mathematics/college/ilz3b3he5irlel4a66h35s5qojkrcgw4id.png)
Hence, the minimum sample size for the number of packages the inspector must select = 52