Answer:
Part a)
![120\pi\ (rad)/(min)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4cxthlsqeje84i8hj9wd6iano5xbej1uvv.png)
Part b)
![960\pi\ (in)/(min)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ekhnt5dfy0usz88lf6c3czxjsv1nguvld1.png)
Explanation:
we have
60 rev/min
Part a) Find the angular speed in radians per minute
we know that
One revolution represent 2π radians (complete circle)
so
![1\ rev=2\pi \ rad](https://img.qammunity.org/2020/formulas/mathematics/high-school/2k8yyryy9adljqll9iko29l9rpjz8bxbce.png)
To convert rev to rad, multiply by 2π
![60\ (rev)/(min)=60(2\pi)=120\pi\ (rad)/(min)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dvrz24aj6v1x5zmx7p7x9z3sqco7ta7z5x.png)
Part b) Find the linear speed in inches per minute
we know that
The circumference of a circle is equal to
![C=2\pi r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kmguleyi3d7rsbh4zj0jg7p7fumid62phf.png)
we have
----> given problem
substitute
![C=2\pi(8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/52tmr2ezm2gyoevy1pak4sk9z8sj3ohvgy.png)
![C=16\pi\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/3wflglecui5y7f067xue70ge5h4tlvby6b.png)
Remember that
One revolution subtends a length equal to the circumference of the circle
so
![1\ rev=16\pi\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/gqnl8fdg9k8a8vj4a4t0rywresrczmwmrh.png)
To convert rev to in, multiply by 16π
![60\ (rev)/(min)=60(16\pi)=960\pi\ (in)/(min)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u11glzup8eui2ijpgqcq9xqo5dry7g4yrb.png)