34.5k views
1 vote
Given right triangle ABC, where angle m ‹A is equal to 45 °, m‹ B = 45°, m‹C=90° solve

3. a=_____________ b=8√3 c=________

4. a=________ b=__________ c=4​

Given right triangle ABC, where angle m ‹A is equal to 45 °, m‹ B = 45°, m‹C=90° solve-example-1
User An Hv
by
5.9k points

1 Answer

4 votes

Answer:

A ) a = 8
√(3) , c = 8
√(6)

B ) a = 2
√(2) , b =
2
√(2)

Explanation:

Given as :

A ) ABC is right triangle , right angle at c

So, ∠ C = 90°

And ∠ A = 45° , ∠ B = 45°

And BC = a , CA = b , AB = c

measure of side b = 8
√(3)

Now, from right angle triangle ABC

Tan ∠ C =
(\textrm Perpendicular)/(\textrm Base)

Or, Tan 45° =
(\textrm a)/(\textrm b)

or, 1 =
\frac{\textrm a}{\textrm8[tex]√(3) }[/tex]

a = 8
√(3)

Now, c² = a² + b²

Or, c² = ( 8
√(3) )² + (8
√(3)

Or, c = 8
√(6)

Again

B ) c = 4

So, Sin ∠ A =
(\textrm Perpendicular)/(\textrm Hypotenuse)

or , Sin 45° =
(\textrm a)/(\textrm 4)

Or , a = 4 × Sin 45°

∴ a = 4 ×
(1)/(√(2) )

I.e a = 2
√(2)

Now , b² = c² - a²

Or, b² = 4² - (2
√(2)

Or, b² = 16 - 8 = 8

Or , b = 2
√(2)

Hence the solution of given expression

A ) a = 8
√(3) , c = 8
√(6)

B ) a = 2
√(2) , b =
2
√(2) Answer

User Photonians
by
6.5k points