105k views
3 votes
When
tan= a 12/5
than evaluate cos2a​

1 Answer

0 votes

Answer:

The value of Cos 2a is - (
(119)/(169) ) .

Explanation:

Given as

Tan a =
(12)/(5)

Now, ∵ Tan Ф =
(\textrm Perpendicular)/(\textrm Base)

So, Tan a =
(\textrm Perpendicular)/(\textrm Base)

Or,
(\textrm Perpendicular)/(\textrm Base) =
(12)/(5)

Or, From Pythagoras Theorem

Hypotenuse² = perpendicular² + Base²

Or, Hypotenuse² = 12² + 5²

Or, Hypotenuse² = 144 + 25

Or, Hypotenuse² = 169

∴ Hypotenuse =
√(169) =
\pm13

Take Hypotenuse = 13

Now,∵ Cos 2Ф = Cos²Ф - Sin²Ф

So, Cos 2a = Cos²a - Sin²a

or , Cos 2a = 1 - 2 Sin²a ∵ Cos²a + Sin²a = 1

Or, Cos 2a = 1 - 2 ×(
(\textrm Perpendicular)/(\textrm Hpotenuse)

Or , Cos 2a = 1 - 2 ×(
(\textrm 12)/(\textrm 13)

Or, Cos 2a = 1 - 2 × (
(144)/(169))

Or, Cos 2a = (
(169-288)/(169))

∴ Cos 2a = - (
(119)/(169))

Hence the value of Cos 2a is - (
(119)/(169)) . answer

User Quartz
by
8.5k points

Related questions

asked Feb 7, 2018 207k views
Mwiegboldt asked Feb 7, 2018
by Mwiegboldt
8.8k points
1 answer
0 votes
207k views
1 answer
4 votes
31.7k views
1 answer
0 votes
134k views