45.6k views
3 votes

( {p}^(2) - 6p {)}^(2) + 10( {p}^(2) - 6p) = 11


1 Answer

2 votes

Answer:

There are four roots of
p,


p= 3+√(2)i\\p = 3-√(2)i\\p= 3+√(10)\\p = 3-√(10)

Step-by-step explanation:

Given:


(p^2-6p)^2+10(p^2-6p)=11\\

Let
p^2-6p =x

Now solving the equation we get:


x^2+10x=11\\x^2+10x-11=0\\x^2-x+11x-11=0\\x(x-1)+11(x-1)=0\\(x+11)(x-1)=0

Now, solving for two values of
x, we get;


x+11=0\\x=-11\\also; x-1=0\\x=1

Now re-substituting value of
x, we get;


p^2-6p=-11\\p^2-6p+11=0\\also p^2-6p=1\\p^2-6p-1=0\\

Now we have two quadratic equation we solve for each,

1) We will solve for
p^2-6p+11=0

Using quadratic formula to solve it. This gives,


x= \frac{-b\±√(b^2-4ac)} {2a}

Here
b= -6, a=1, c =11

hence,
p= \frac{-(-6)\±√((-6)^2-4* 1* 11)} {2* 1}=\frac{6\±√((36-44))} {2}=\frac{6\±√(-8)} {2}= \frac{6\±2√(2)i} {2}


p = \frac{6\±2√(2)i} {2}= 3\±√(2)i\\hence, p= 3+√(2)i \ or \ p = 3-√(2)i

2) We will solve for
p^2-6p-1=0

Using quadratic formula to solve it. This gives,


x= \frac{-b\±√(b^2-4ac)} {2a}

here
b= -6, a=1, c =-1


\therefore p= \frac{-(-6)\±√((-6)^2-4* 1* -1)} {2* 1}=\frac{6\±√((36+4))} {2}=\frac{6\±√(40)} {2}= \frac{6\±2√(10)} {2}


p = \frac{6\±√(10)} {2}= 3\±√(10)\\hence, p= 3+√(10) \ or \ p = 3-√(10)

Hence, from 1 and 2, we find there are 2 real roots and 2 imaginary roots.


p= 3+√(2)i\\p = 3-√(2)i\\p= 3+√(10)\\p = 3-√(10)

User Yanesa
by
8.9k points

No related questions found