210,042 views
18 votes
18 votes
Choose the solution to this inequality. < 3 34 O A. y. -12 B. ys o o c. y< 1 / 3 O D. y> 4​

Choose the solution to this inequality. < 3 34 O A. y. -12 B. ys o o c. y< 1 / 3 O-example-1
User Lyror
by
2.7k points

1 Answer

5 votes
5 votes

Answer:


\boxed{\boxed{\bf y < - \cfrac{1}{2}}}

Option A

Explanation:


\bf \: Given \: inequality :


\sf \implies \: \cfrac{4}{3 } \: y < \cfrac{ - 8}{3} \: y

We need to find the solution to the inequality.


\bf \: Solution:


\sf \implies \: \cfrac{4}{3 } \: y < \cfrac{ - 8}{3} \: y


\rm \: Firstly,Flip \: the \: inequality :


\sf \implies \cfrac{ - 8}{3} y > \cfrac{4}{3}


\rm \: Then,\; multiply\; each\: side \: \: by \: \cfrac{ - 3}{8} \: :


\sf \implies \: \cfrac{ - 8}{3}y * \cfrac{ 3}{ - 8} > \cfrac{4}{3} * \cfrac{ 3}{ - 8}


\rm \: Use \: cancellation \: method \: to \: cancel \: LHS:-

Steps of cancelling :-

  • Cancel -8( which is on the numerator) and -8 (on the denominator) :


\sf \implies \cfrac{ \cancel{- 8}}{3}y * \cfrac{ 3}{ \cancel{- 8} } > \cfrac{4}{3} * \cfrac{ 3}{ - 8}

  • Cancel 3(which is on the numerator) and 3( which is on the denominator) :


\sf \implies\cfrac{ \cancel{- 8}}{ \cancel3}y * \cfrac{ \cancel 3}{ \cancel{- 8} } > \cfrac{4}{3} * \cfrac{ 3}{ - 8}

  • Results to,


\sf \implies \: 1y < \cfrac{4}{3} * \cfrac{3}{ - 8}

As we know 1y equals to y. So,


\sf \implies \: y < \cfrac{4}{3} * \cfrac{3}{ - 8}


\rm \: Now, Cancel \: the \: RHS :

Steps of cancelling:-

  • Cancel 3 (which is on the numerator) and cancel 3 (which is on the denominator):


\sf \implies \: y < \cfrac{4}{ \cancel3} * \cfrac{ \cancel3}{ - 8}


\sf \implies{y} < 4 * \cfrac{1}{ - 8}

  • Cancel 4 and -8 :


\sf \implies \: y < \cancel{4} * \cfrac{1}{ \cancel{ - 8}}

  • Results to,


\sf \implies \: y < 1 × \cfrac{ - 1}{2}


\sf \implies \: y < \cfrac{ - 1}{2}


\rm \: Which \: can \: be \: rewritten \: as,


\sf \implies \: y < - \cfrac{1}{2}

This matches with option A.

Hence, Option A is correct!


\rule{225pt}{2pt}

I hope this helps!

Let me know if you have any questions.I am joyous to help!

User Alexander Kurakin
by
3.4k points