210k views
18 votes
Choose the solution to this inequality. < 3 34 O A. y. -12 B. ys o o c. y< 1 / 3 O D. y> 4​

Choose the solution to this inequality. < 3 34 O A. y. -12 B. ys o o c. y< 1 / 3 O-example-1
User Lyror
by
7.6k points

1 Answer

5 votes

Answer:


\boxed{\boxed{\bf y < - \cfrac{1}{2}}}

Option A

Explanation:


\bf \: Given \: inequality :


\sf \implies \: \cfrac{4}{3 } \: y < \cfrac{ - 8}{3} \: y

We need to find the solution to the inequality.


\bf \: Solution:


\sf \implies \: \cfrac{4}{3 } \: y < \cfrac{ - 8}{3} \: y


\rm \: Firstly,Flip \: the \: inequality :


\sf \implies \cfrac{ - 8}{3} y > \cfrac{4}{3}


\rm \: Then,\; multiply\; each\: side \: \: by \: \cfrac{ - 3}{8} \: :


\sf \implies \: \cfrac{ - 8}{3}y * \cfrac{ 3}{ - 8} > \cfrac{4}{3} * \cfrac{ 3}{ - 8}


\rm \: Use \: cancellation \: method \: to \: cancel \: LHS:-

Steps of cancelling :-

  • Cancel -8( which is on the numerator) and -8 (on the denominator) :


\sf \implies \cfrac{ \cancel{- 8}}{3}y * \cfrac{ 3}{ \cancel{- 8} } > \cfrac{4}{3} * \cfrac{ 3}{ - 8}

  • Cancel 3(which is on the numerator) and 3( which is on the denominator) :


\sf \implies\cfrac{ \cancel{- 8}}{ \cancel3}y * \cfrac{ \cancel 3}{ \cancel{- 8} } > \cfrac{4}{3} * \cfrac{ 3}{ - 8}

  • Results to,


\sf \implies \: 1y < \cfrac{4}{3} * \cfrac{3}{ - 8}

As we know 1y equals to y. So,


\sf \implies \: y < \cfrac{4}{3} * \cfrac{3}{ - 8}


\rm \: Now, Cancel \: the \: RHS :

Steps of cancelling:-

  • Cancel 3 (which is on the numerator) and cancel 3 (which is on the denominator):


\sf \implies \: y < \cfrac{4}{ \cancel3} * \cfrac{ \cancel3}{ - 8}


\sf \implies{y} < 4 * \cfrac{1}{ - 8}

  • Cancel 4 and -8 :


\sf \implies \: y < \cancel{4} * \cfrac{1}{ \cancel{ - 8}}

  • Results to,


\sf \implies \: y < 1 × \cfrac{ - 1}{2}


\sf \implies \: y < \cfrac{ - 1}{2}


\rm \: Which \: can \: be \: rewritten \: as,


\sf \implies \: y < - \cfrac{1}{2}

This matches with option A.

Hence, Option A is correct!


\rule{225pt}{2pt}

I hope this helps!

Let me know if you have any questions.I am joyous to help!

User Alexander Kurakin
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories