64.8k views
1 vote
The graph of the step function g(x) = –⌊x⌋ + 3 is shown. On a coordinate plane, a step graph has horizontal segments that are each 1 unit long. The left end of each segment is a closed circle. The right end of each segment is an open circle. The left-most segment goes from (negative 2, 5) to (negative 1, 5). Each segment is 1 unit lower and 1 unit farther to the right than the previous segment. The right-most segment goes from (4, negative 1) to (5, negative 1). What is the domain of g(x)? x x is an integer x –1 ≤ x ≤ 5

User Rhianna
by
5.9k points

2 Answers

3 votes

Answer:

the answer is c

Explanation:

User Sanal Varghese
by
6.2k points
7 votes

Answer:

–2 ≤ x < 5

Explanation:

There is a box function plotted on the graph.

The function is g(x) = –⌊x⌋ + 3.

Now, we know that a box function represents a step graph having horizontal segments that are each 1 unit long. The left end of each segment is a closed circle. The right end of each segment is an open circle.

It is given that the left-most segment of the given graph goes from (-2,5) to (-1,5) and the rightmost segment goes from (4,-1) to (5,-1).

So, for the left most segment the domain is -2 ≤ x < -1

And for the right most segment the domain is 4 ≤ x < 5

Therefore, the total domain of g(x) will be –2 ≤ x < 5 (Answer)

User RBJ
by
5.6k points