Answer:
m ∠ AMC = 75°
Explanation:
Given:
In Δ ABC, m ∠C=90°
m∠ B =30°
CM is angle bisector
We need to find m ∠AMC
In Δ ABC Sum of all angle is 180° so we get,
![m\angle A+m\angle B+m\angle C =180\\m\angle A+90+30 =180\\m\angle A+120 =180\\m\angle A=180-120\\m\angle A=60](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k8za7f0rfi1sk8ms3w635d3qiu0t9b6ojz.png)
Now we know that CM is angle bisector of ∠C
∴
![m\angle ACM +m\angle BCM =90\\m\angle ACM +m\angle ACM =90\\2m\angle ACM =90\\m\angle ACM =(90)/(2)=45](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hnnccbdrow35ywvqtx7d91re24w96lfkn6.png)
Now in Δ ACM we know that Sum of all angles is 180
![m\angle ACM + m\angle AMC + m\angle A=180\\45 + m\angle AMC + 60 =180\\105 + m\angle AMC =180\\m\angle AMC =180 -105 =75](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v7wtsbvamki0ohctdlt2gtl5wwqvwi9n9t.png)
Hence m ∠ AMC = 75°