232k views
4 votes
Solve dy/dx = sqrt x+16 subject to the initial condition y(0)=0

1 Answer

1 vote

Answer:


y=(2)/(3) x^{(3)/(2)} + 16x

or


y=(2)/(3) \sqrt{x^(3)} + 16x

Explanation:


(dy)/(dx) = √(x) + 16\\ \int\limits {dy} \ =\int\limits { (√(x) + 16)} \, dx =\\=\int\limits { (x^{(1)/(2) } + 16)} \, dx=\int\limits {x^{(1)/(2) } } \, dx +\int\limits{16} \, dx = (2)/(3) x^{(3)/(2)} + 16x + C\\y=(2)/(3) x^{(3)/(2)} + 16x + C\\0=(2)/(3) *0^{(3)/(2)} + 16*0 + C\\C=0\\y=(2)/(3) x^{(3)/(2)} + 16x

User Tobiasfried
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories