Answer:
{6, 8, 10} is a set which represents the side length of a right triangle.
Explanation:
In a right triangle:
![(Base)^(2) + (Perpendicular)^(2) = (Hypotenuse)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a0q0mqv510asipqtk01huad1cn2xejz8fd.png)
Now, in the given triplets:
(a) {4, 8, 12}
Here,
![(4)^(2) + (8)^(2) = 16 + 64 = 80\\\implies H = √(80) = 8.94](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1pvcahf7khywab4qpjetr44euxo3abjdc1.png)
So, third side of the triangle 8.94 ≠ 12
Hence, {4, 8, 12} is NOT a triplet.
(b) {6, 8, 10}
Here,
![(6)^(2) + (8)^(2) = 36 + 64 = 100\\\implies H = √(100) = 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/abccvprm7z1hsjnaibgm6wy7b6r1xj3scq.png)
So, third side of the triangle 10
Hence, {6, 8, 10} is a triplet.
(c) {6, 8, 15}
Here,
![(6)^(2) + (8)^(2) = 36 + 64 = 100\\\implies H = √(100) = 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/abccvprm7z1hsjnaibgm6wy7b6r1xj3scq.png)
So, third side of the triangle 10 ≠ 15
Hence, {6, 8, 15} is NOT a triplet.
(d) {5, 7, 13}
Here,
![(5)^(2) + (7)^(2) = 25 + 49 = 74\\\implies H = √(74) = 8.60](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o6jq6refg6bd4e3sohewo06pyksijrdstn.png)
So, third side of the triangle 8.60 ≠ 13
Hence, {5, 7, 13} is NOT a triplet.