118k views
2 votes
flows into a catalytic reactor at 26.2 atm and 250.°C with a flow rate of 1100. L/min. Hydrogen at 26.2 atm and 250.°C flows into the reactor at a flow rate of 1400. L/min. If 13.9 kg is collected per minute, what is the percent yield of the reaction?

1 Answer

3 votes

Answer:

69%

Step-by-step explanation:

Say the hydrocarbon is C2H4, the equation of reaction would be;

C2H4 + H2 ----------> C2H6

The hydrocarbon, C2H4 is the limiting reagent.

From the question, the hydrocarbon C2H4 flows into a catalytic reactor at 26.2 atm and 250°C with a flow rate of 1100 L/min

Using, PV=nRT--------------------(1).

n= PV/RT to find the number of moles.

n= 26.2 atm × 1100 L/ 0.0821 L. atm/mol per kelvin × 523 K.

=28,820 atm.L/ 42.9383 L.atm/mol.

= 671.2 mole.

One mole of C2H4 produced one mole of C2H6.

Mass of C2H6 = 30 × 671.2

= 20,136 g = 20.136 kg.

Percent yield = actual yield/ theoretical yield × 100% -------(2)

Actual yield= 13.9 kg, theoretical yield = 20.136 kg

Substitute the parameters into equation (2). We have;

Percent yield = 13.9 kg/ 20.136× 100

Percent yield= 0.69 × 100

Percent yield= 69%

Note: P= pressure, V= volume, T= temperature and n = number of moles

User Patryk Rudnicki
by
5.5k points