63.6k views
5 votes
A disk-shaped merry-go-round of radius 2.13 m and mass 175 kg rotates freely with an angular speed of 0.651 rev/s. A 55.4 kg person running tangentially to the rim of the merry-go-round at 3.51 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim.

Calculate the final kinetic energy for this system.

1 Answer

4 votes

Answer:

Step-by-step explanation:

To find out the angular velocity of merry-go-round after person jumps on it , we shall apply law of conservation of ANGULAR momentum

I₁ ω₁ + I₂ ω₂ = ( I₁ + I₂ ) ω

I₁ is moment of inertia of disk , I₂ moment of inertia of running person , I is the moment of inertia of disk -man system , ω₁ and ω₂ are angular velocity of disc and man .

I₁ = 1/2 mr²

= .5 x 175 x 2.13²

= 396.97 kgm²

I₂ = m r²

= 55.4 x 2.13²

= 251.34 mgm²

ω₁ = .651 rev /s

= .651 x 2π rad /s

ω₂ = tangential velocity of man / radius of disc

= 3.51 / 2.13

= 1.65 rad/s

I₁ ω₁ + I₂ ω₂ = ( I₁ + I₂ ) ω

396.97 x .651 x 2π + 251.34 x 1.65 = ( 396.97 + 251.34 ) ω

ω = 3.14 rad /s

kinetic energy = 1/2 I ω²

= 3196 J

User Iori
by
4.6k points