Answer:
θ₀ = 67.79°
Step-by-step explanation:
Given info
we know that
Ymax = v₀y² / (2g)
v = v₀x (when Y = Ymax)
when the projectile was at half its maximum height (Y')
v' = 2v = 2*v₀x
we can use the equations
(v')²= v'x² + v'y² ⇒ (2*v₀x)² = (v₀x)² + v'y² ⇒ v'y² = 3*(v₀x)² (I)
if we know that
v'y² = v₀y² - 2*g*(y')
y' = Ymax /2 = (v₀y² / (2g)) / 2 = v₀y² / (4g)
then
v'y² = v₀y² - 2*g*(v₀y² / (4g)) = v₀y² - (v₀y² / 2) = v₀y² / 2
⇒ v'y² = v₀y² / 2 (II)
we can say that (I) = (II)
3*(v₀x)² = v₀y² / 2 ⇒ v₀y = √6*v₀x
Finally we apply
tan θ₀ = v₀y / v₀x
⇒ tan θ₀ = √6*v₀x / v₀x = √6
⇒ θ₀ = tan⁻¹ (√6) = 67.79°