134k views
2 votes
Given 1+ cos x/ sin x + sin x/1+ cos x= 4, find a numerical value of one trigonometric function of x.

User Myuiviews
by
8.4k points

2 Answers

6 votes

Answer: D. sin x= 1/2

Explanation:

Edg 2020

User Rowie Po
by
8.0k points
5 votes

Answer:

The numerical value of the trigonometric function is 30 °

Explanation:

Given trigonometric function as :


(1 + cos x)/(sin x) +
(sin x)/(1 + cos x) = 4

or, Taking LCM we get


((1+cosx)^(2)+sin^(2)x)/((sinx)* (1+cosx)) = 4

Or, ( 1 + cos x )² + sin² x = 4 × ( sin x ) × ( 1 + cos x )

1 + cos² x + 2 cox + sin² x = 4 sin x + 4 sin x × cos x

or, ( cos² x + sin² x ) + ( 1 + 2 cos x ) = 4 sin x ( 1 + cos x )

∵ cos² x + sin² x = 1

or, 1 + 1 + 2 cos x = 4 sin x ( 1 + cos x )

or, 2 + 2 cos x = 4 sin x ( 1 + cos x )

or, 2 ( 1 + cos x ) = 4 sin x ( 1 + cos x )

Or,
(2 ( 1+ cos x ))/(4 ( 1 + cos x )) = sin x

Or, sin x =
(1)/(2)

∴ x =
sin^(-1)(1)/(2)

∵ sin 30 ° =
(1)/(2)

I.e x = 30 °

Hence The numerical value of the trigonometric function is 30 ° answer

User Shivam Srivastava
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories