9.1k views
3 votes
A tank with a capacity of 1600 L is full of a mixture of water and chlorine with a concentration of 0.0125 g of chlorine per liter. In order to reduce the concentration of chlorine, fresh water is pumped into the tank at a rate of 16 L/s. The mixture is kept stirred and is pumped out at a rate of 40 L/s. Find the amount of chlorine in the tank as a function of time. (Let y be the amount of chlorine in grams and t be the time in seconds.)

1 Answer

6 votes

Answer:

y(t) = 20 [1600^(-5/3)] x (1600-24t)^ (5/3)

Explanation:

1) Identify the problem

This is a differential equation problem

On this case the amount of liquid in the tank at time t is 1600−24t. (When the process begin, t=0 ) The reason of this is because the liquid is entering at 16 litres per second and leaving at 40 litres per second.

2) Define notation

y = amount of chlorine in the tank at time t,

Based on this definition, the concentration of chlorine at time t is y/(1600−24t) g/ L.

Since liquid is leaving the tank at 40L/s, the rate at which chlorine is leaving at time t is 40y/(1600−24t) (g/s).

For this we can find the differential equation

dy/dt = - (40 y)/ (1600 -24 t)

The equation above is a separable Differential equation. For this case the initial condition is y(0)=(1600L )(0.0125 gr/L) = 20 gr

3) Solve the differential equation

We can rewrite the differential equation like this:

dy/40y = - (dt)/ (1600-24t)

And integrating on both sides we have:

(1/40) ln |y| = (1/24) ln (|1600-24t|) + C

Multiplying both sides by 40

ln |y| = (40/24) ln (|1600 -24t|) + C

And simplifying

ln |y| = (5/3) ln (|1600 -24t|) + C

Then exponentiating both sides:

e^ [ln |y|]= e^ [(5/3) ln (|1600-24t|) + C]

with e^c = C , we have this:

y(t) = C (1600-24t)^ (5/3)

4) Use the initial condition to find C

Since y(0) = 20 gr

20 = C (1600 -24x0)^ (5/3)

Solving for C we got

C = 20 / [1600^(5/3)] = 20 [1600^(-5/3)]

Finally the amount of chlorine in the tank as a function of time, would be given by this formula:

y(t) = 20 [1600^(-5/3)] x (1600-24t)^ (5/3)

User Madars Vi
by
7.8k points