Final answer:
a) The wavelength of the radio station's broadcast is approximately 272.73 meters. b) At a time of 3.1 μs, the value of the radio wave's electric field is approximately 0.619 N/C.
Step-by-step explanation:
a) To calculate the wavelength of the radio station's broadcast, we can use the formula λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency. Plugging in the given frequency of 1100 kHz (or 1100 x 10^3 Hz), we get: λ = (3 x 10^8 m/s) / (1100 x 10^3 Hz) = 272.73 m
b) To find the value of the radio wave's electric field at a specific time, we can use the given time dependence equation E(t) = E0 sin(2πft), where E0 is the amplitude, f is the frequency, and t is the time. Plugging in the given amplitude of E0 = 0.62 N/C, frequency of 1100 kHz (or 1100 x 10^3 Hz), and time of 3.1 μs (or 3.1 x 10^-6 s), we get: E(t) = 0.62 sin(2π x 1100 x 10^3 x 3.1 x 10^-6) ≈ 0.619 N/C