Answer:
a)
![P_(L)=199.075W](https://img.qammunity.org/2020/formulas/physics/college/2aivtlg5qmseukli6pvumvs4tvnlraye14.png)
b)
![P_(L)=1.991x10^(-4)W](https://img.qammunity.org/2020/formulas/physics/college/shbg9w9jms2m9asn0xvk4iosviuk07vcte.png)
Step-by-step explanation:
1) Notation
Power on the refrigerator:
![P=IV=3Ax110V=330W](https://img.qammunity.org/2020/formulas/physics/college/678pup0splxufaxcrd713rjd52kt8818hu.png)
Voltage
![V=110V](https://img.qammunity.org/2020/formulas/physics/college/im5blg8jy84uph9awdrvnshhoqwf3liw0l.png)
, so then the radius would be
![r=(8.252)/(2)=4.126mm](https://img.qammunity.org/2020/formulas/physics/college/qux9pqvlwrzellzbxav1veg7bwvvc367yb.png)
, representing the length of the two wires.
, that represent the resistivity for the aluminum founded on a book
power lost in the transmission.
2) Part a
We can find the total power adding all the individual values for power:
![P_(tot)=(330+100+60+3)W=493W](https://img.qammunity.org/2020/formulas/physics/college/n3sbcbsq3mogu8rajk1cc8n38oyn4g8yx9.png)
From the formula of electric power:
![P=IV](https://img.qammunity.org/2020/formulas/physics/college/rubmfhp4wpbnzz12gca36xo5ro9qu031ii.png)
We can solve for the current like this:
![I=(P)/(V)](https://img.qammunity.org/2020/formulas/physics/middle-school/i1e9kcaelkr6871ctbroeb4d9qxzu5sjpl.png)
Since we know
and the voltage 110 V, we have:
![I=(493W)/(110V)=4.482A](https://img.qammunity.org/2020/formulas/physics/college/nj9o6qcn4otohi8hvdtzr1il7f9qna0nw8.png)
The next step would be find the cross sectional are for the aluminum cables with the following formula:
![A=\pi r^2 =\pi(0.004126m)^2=5.348x10^(-5)m^2](https://img.qammunity.org/2020/formulas/physics/college/4p17jxz1y3sibigbd4o2lm9888rvp3zwrm.png)
Then with this area we can find the resistance for the material given by:
![R=\rho (L)/(A)=2.65x10^(-8)\Omega m(20000m)/(5.348x10^(-5)m^2)=9.910\Omega](https://img.qammunity.org/2020/formulas/physics/college/pf8mh7fn65vkz4ufh01adhxbo10u4vjtxc.png)
With this resistance then we can find the power dissipated with the following formula:
![P_(L)=I^2 R=(4.482A)^2 9.910\Omega=199.075W](https://img.qammunity.org/2020/formulas/physics/college/gtv2iy48zta1nktfdpawclm8bz5yhit3s8.png)
And if we want to find the percentage of power loss we can use this formula
![\% P_(L)=(P_L)/(P)x100](https://img.qammunity.org/2020/formulas/physics/college/mghx2cnnvvswtjjor4mutpzmoh5vzxz7ic.png)
3) Part b
Similar to part a we just need to change the value for V on this case to 110KV.
We can solve for the current like this:
![I=(P)/(V)](https://img.qammunity.org/2020/formulas/physics/middle-school/i1e9kcaelkr6871ctbroeb4d9qxzu5sjpl.png)
Since we know
and the voltage 110 KV=110000V, we have:
![I=(493W)/(110000V)=4.482x10^(-3)A](https://img.qammunity.org/2020/formulas/physics/college/epic37uilmeyi2q3o5vxfqwbout595a3tq.png)
The cross sectional area is the same
The resistance for the material not changes.
With this resistance then we can find the power dissipated with the following formula:
![P_(L)=I^2 R=(4.482x10^(-3)A)^2 9.910\Omega=1.991x10^(-4)W](https://img.qammunity.org/2020/formulas/physics/college/2pbqtpdnvzmpmoy3fxx191wl802oes62vw.png)