Answer:
The ratio of all the adjacent terms is the same and equal to
![r=-4](https://img.qammunity.org/2022/formulas/mathematics/college/v53l0ira43aat1jqpxbidw86u0bszaaf1u.png)
The next three terms after the last one will be:
Explanation:
Given the sequence
-4, 16, -64, 256, …
Finding the common ratio
An arithmetic sequence has a constant ratio 'r' and is defined by
![a_n=a_1\cdot r^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ul4ahude4jolk1usgr0rc6tp26o0pk0xmj.png)
computing the ratios of all the adjacent terms
![(16)/(-4)=-4,\:\quad (-64)/(16)=-4,\:\quad (256)/(-64)=-4](https://img.qammunity.org/2022/formulas/mathematics/college/xzpkcmkv65vlbfmu39yajzihjxcx56m9r5.png)
The ratio of all the adjacent terms is the same and equal to
![r=-4](https://img.qammunity.org/2022/formulas/mathematics/college/v53l0ira43aat1jqpxbidw86u0bszaaf1u.png)
Finding the next three terms
Given the sequence
-4, 16, -64, 256, …
here
![a_1=-4](https://img.qammunity.org/2022/formulas/mathematics/college/1qp3m564j2mrd8wfvsnwpqojcxfkohae42.png)
![r=-4](https://img.qammunity.org/2022/formulas/mathematics/college/v53l0ira43aat1jqpxbidw86u0bszaaf1u.png)
substituting
and
in the nth term
![a_n=a_1\cdot r^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ul4ahude4jolk1usgr0rc6tp26o0pk0xmj.png)
![a_n=-4\left(-4\right)^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/college/d8ov9t5excbnybzra58knqhbmocz4tck3y.png)
substituting n = 5 to determine the 5th term
![a_5=-4\left(-4\right)^(5-1)](https://img.qammunity.org/2022/formulas/mathematics/college/5hx2g590p431rnnw1gzaukjgck384mh6jk.png)
![a_5=-4^4\cdot \:4](https://img.qammunity.org/2022/formulas/mathematics/college/7f051jna7drbmn7gdeg7ibyvcwz8ltidny.png)
![\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)](https://img.qammunity.org/2022/formulas/mathematics/college/q6gxzkf8cbd5pfg5mtkd8nwh0m0vxtf6ye.png)
![a_5=-4^(1+4)](https://img.qammunity.org/2022/formulas/mathematics/college/yebh2d06uuqyd1nq23otoll612ol77vkae.png)
![a_5=-4^5](https://img.qammunity.org/2022/formulas/mathematics/college/ru9skar9j9r9nkh6mhm13x9tx22oapcj8k.png)
![a_5=-1024](https://img.qammunity.org/2022/formulas/mathematics/college/p605aei7vzhrscnbfrrqgbe47b9re9nok8.png)
substituting n = 6 to determine the 6th term
![a_6=-4\left(-4\right)^(6-1)](https://img.qammunity.org/2022/formulas/mathematics/college/w5hjap96rpyb6u31lt4mvxgumtxqg5me5h.png)
![a_6=-4\left(-4^5\right)](https://img.qammunity.org/2022/formulas/mathematics/college/idhw82mlikfrkgq40vhkwsn0nt4vk16kgn.png)
![\mathrm{Apply\:rule}\:-\left(-a\right)=a](https://img.qammunity.org/2022/formulas/mathematics/college/xygozhzmkpbx6xv9cdarjpo3dxes2kswpl.png)
![a_6=4\cdot \:4^5](https://img.qammunity.org/2022/formulas/mathematics/college/74g0dv2sbjwa3c06cejj8wcae70ougtc7v.png)
![\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)](https://img.qammunity.org/2022/formulas/mathematics/college/q6gxzkf8cbd5pfg5mtkd8nwh0m0vxtf6ye.png)
![a_6=4^(1+5)](https://img.qammunity.org/2022/formulas/mathematics/college/nazzi4b7ou7s4sm9g4kucviq41eii34uqx.png)
![a_6=4^6](https://img.qammunity.org/2022/formulas/mathematics/college/jduozeaphwunr52r32xdfsovtexlyczpog.png)
![a_6=4096](https://img.qammunity.org/2022/formulas/mathematics/college/a79q18pr2pfy83wyoeo3x9t6uzcji16hai.png)
substituting n = 7 to determine the 6th term
![a_7=-4\left(-4\right)^(7-1)](https://img.qammunity.org/2022/formulas/mathematics/college/485ok453jwyis80dx2n207b78o50sm08w8.png)
![a_7=-4^6\cdot \:4](https://img.qammunity.org/2022/formulas/mathematics/college/50hos8ljst5frkq2173sgvc7b61lzy34bm.png)
![\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)](https://img.qammunity.org/2022/formulas/mathematics/college/q6gxzkf8cbd5pfg5mtkd8nwh0m0vxtf6ye.png)
![a_7=-4^(1+6)](https://img.qammunity.org/2022/formulas/mathematics/college/xgn7wi84l6g6t8gegcel3aq5f9fx3oozpk.png)
![a_7=-4^7](https://img.qammunity.org/2022/formulas/mathematics/college/flb5vzspysuwnbk8exinatji3wih4mxyc8.png)
![a_7=-16384](https://img.qammunity.org/2022/formulas/mathematics/college/ths5xaedbfw4e8uh500s95azmoknnwaxrr.png)
Therefore, the next three terms after the last one will be: