29.7k views
21 votes
Find the common ratio and the three terms in the sequence after the last one given. -4, 16, -64, 256, …

1 Answer

3 votes

Answer:

The ratio of all the adjacent terms is the same and equal to


r=-4

The next three terms after the last one will be:


  • a_5=-1024

  • a_6=4096

  • a_7=-16384

Explanation:

Given the sequence

-4, 16, -64, 256, …

Finding the common ratio

An arithmetic sequence has a constant ratio 'r' and is defined by


a_n=a_1\cdot r^(n-1)

computing the ratios of all the adjacent terms


(16)/(-4)=-4,\:\quad (-64)/(16)=-4,\:\quad (256)/(-64)=-4

The ratio of all the adjacent terms is the same and equal to


r=-4

Finding the next three terms

Given the sequence

-4, 16, -64, 256, …

here


a_1=-4


r=-4

substituting
a_1=-4 and
r=-4 in the nth term


a_n=a_1\cdot r^(n-1)


a_n=-4\left(-4\right)^(n-1)

substituting n = 5 to determine the 5th term


a_5=-4\left(-4\right)^(5-1)


a_5=-4^4\cdot \:4


\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)


a_5=-4^(1+4)


a_5=-4^5


a_5=-1024

substituting n = 6 to determine the 6th term


a_6=-4\left(-4\right)^(6-1)


a_6=-4\left(-4^5\right)


\mathrm{Apply\:rule}\:-\left(-a\right)=a


a_6=4\cdot \:4^5


\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)


a_6=4^(1+5)


a_6=4^6


a_6=4096

substituting n = 7 to determine the 6th term


a_7=-4\left(-4\right)^(7-1)


a_7=-4^6\cdot \:4


\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)


a_7=-4^(1+6)


a_7=-4^7


a_7=-16384

Therefore, the next three terms after the last one will be:


  • a_5=-1024

  • a_6=4096

  • a_7=-16384
User Boob
by
3.3k points