Answer:
Mean =
![\mu = 550](https://img.qammunity.org/2020/formulas/mathematics/college/f4op0zpz1v6rg1bvlcay5u0y3kio4rxe6j.png)
Standard deviation =
![\sigma = 50](https://img.qammunity.org/2020/formulas/mathematics/college/1pdbjqfqu9ecqkm95b0u69qxkl3ww2l9q7.png)
a. What percentage of adult bottlenose dolphins weigh from 400 to 600 pounds?
P(400<x<600)
Formula :
![Z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5loxpkwxtms4jupgd0o8ten98v7113nywe.png)
at x = 400
![Z=(400-550)/(50)](https://img.qammunity.org/2020/formulas/mathematics/college/e5bd4b7kft6l3goz8xkl7qwcem42b7yvjz.png)
![Z=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wgbxue6155sws301lfca5xbiyqxow0iztn.png)
Refer the z table for p value
p value = 0.0013
at x = 600
![Z=(600-550)/(50)](https://img.qammunity.org/2020/formulas/mathematics/college/14j2722xgzmyi0hwsq2fgh821nltpn2cit.png)
![Z=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/d7bij0t5uakin0965cb12vszsky2bfqrfg.png)
Refer the z table for p value
p value = 0.8413
P(400<x<600)=P(x<600)-P(x<400)=0.8413-0.0013=0.84
So,84% of adult bottlenose dolphins weigh from 400 to 600 pounds
b)If X represents the mean weight of a random sample of 9 adult bottlenose dolphins, what is P (500<x < 580) ?
Formula :
![Z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5loxpkwxtms4jupgd0o8ten98v7113nywe.png)
at x = 500
![Z=(500-550)/(50)](https://img.qammunity.org/2020/formulas/mathematics/college/kms0n2lp6go44xy4jgynnyz36b7t5lng2p.png)
![Z=-1](https://img.qammunity.org/2020/formulas/mathematics/college/xzcqokx5eslfcctwf7ve6n2w0mddi64w1w.png)
Refer the z table for p value
p value = 0.1587
at x = 580
![Z=(580-550)/(50)](https://img.qammunity.org/2020/formulas/mathematics/college/v9jcq55xh52vy586x3d0bzn2lmeswtd2vd.png)
![Z=0.6](https://img.qammunity.org/2020/formulas/mathematics/college/m1rirqd1c564jedho21sou3v1o90hiav6c.png)
Refer the z table for p value
p value = 0.7257
P(500<x<580)=P(x<580)-P(x<500)=0.7257-0.1587=0.84
c). In a random sample of 9 adult bottlenose dolphins, what is the probability that 5 of them are heavier than 560 pounds?
at x = 560
![Z=(560-550)/(50)](https://img.qammunity.org/2020/formulas/mathematics/college/f6p1shspaxmt56wzc0ae1y0fk9ukgg11ah.png)
![Z=0.2](https://img.qammunity.org/2020/formulas/mathematics/college/u94g8pu1ngghmvnyvnkaexwzxf7tyfyrnc.png)
Refer the z table for p value
p value = 0.5793
P(x>560)=1-P(x<560)=1-0.5793=0.4207
Now to find the the probability that 5 of them are heavier than 560 pounds we will use binomial distribution
![P(X=r)=^nC_r p^r q^(n-r)](https://img.qammunity.org/2020/formulas/mathematics/college/3y2jgiq1kfmvvt18fb8wca4wnhvrzhqf6i.png)
p is the probability of success that is 0.4207
q = 1-p = probability of failure
n = 9
r = 5
![P(X=5)=^9C_5 (0.4207)^5 (1-0.4207)^(9-5)](https://img.qammunity.org/2020/formulas/mathematics/college/mnfhmj8rps028y9ehp9q7599ql6hc2z2na.png)
![P(X=5)=(9!)/(5!(9-5)!)(0.4207)^5 (1-0.4207)^(9-5)](https://img.qammunity.org/2020/formulas/mathematics/college/nm2e7b3kz5cs186ii6ew2evdpvphtzmppi.png)
![P(X=5)=0.187](https://img.qammunity.org/2020/formulas/mathematics/college/h7xvxphyauo894j0fecjl273ikynpjak09.png)
Hence In a random sample of 9 adult bottlenose dolphins, the probability that 5 of them are heavier than 560 pounds is 0.187