216k views
3 votes
The value of ΔG° at 25 °C for the decomposition of gaseous sulfur trioxide to solid elemental sulfur and gaseous oxygen, 2SO3 (g) → 2S (s, rhombic) + 3O2 (g) is ________ kJ/mol. The value of G° at 25 °C for the decomposition of gaseous sulfur trioxide to solid elemental sulfur and gaseous oxygen, 2SO3 (g) 2S (s, rhombic) + 3O2 (g) is ________ kJ/mol. +740.8 -370.4 +185.2 +370.4 -740.8

User Shpend
by
6.0k points

1 Answer

3 votes

Answer:


\begin{array}{l}{\text { The value of } \Delta \mathrm{G}^(\circ) \text { at } 25^(\circ) \mathrm{C} \text { for the decomposition of gaseous sulfur trioxide to solid }} \\ {\text { elemental sulfur and gaseous oxygen is }+740.8 \mathrm{kJ} / \mathrm{mol}}\end{array}

Option: A

Step-by-step explanation:


\begin{array}{l}{\text { The value of } \Delta \mathrm{G}^(\circ) \text { at } 25^(\circ) \mathrm{C} \text { in the following reaction can be calculated as follows: }} \\ {2 \mathrm{SO}_(3)(\mathrm{g}) \rightarrow 2 \mathrm{S}(\mathrm{s}, \text { rhombic })+3 \mathrm{O}_(2)(\mathrm{g})}\end{array}


\begin{array}{l}{\Delta \mathrm{G}^(\circ) \text { is Standard Gibbs free energy change which can be calculated from the standard free }} \\ {\text { energies of formation of the products and the reactants from the following equation: }}\end{array}


\begin{array}{l}{\Delta \mathrm{G}^(\circ)=\Sigma \mathrm{G}_{\mathrm{f}(\text { products })}^(\circ)-\Sigma \mathrm{G}_{\text {creatants }}^(\circ)} \\ {\Delta \mathrm{G}^(\circ)=[\mathrm{Sum} \text { of standard free energies of formation of products }]-[\mathrm{Sum}\text { of standard } } \\ {\text { free energies bf formation of reactants] }}\end{array}


\begin{array}{l}{\text { Now here standard values of } \Delta G^(\circ) f(k J / m o l) \text { for } S=0, O_(2)=0 \& S O_(3)=-370.4} \\ {\text { Hence these values can be substituted in above equation: }} \\ {\Delta G^(\circ)=\left[2 G_(f)^(\circ)(0)+3 G_(f)(0)\right]-[2(-370.4)]} \\ {\Delta G^(\circ)=[-0+0]-[-740.8]} \\ {\Delta G^(\circ)=+740.8 \mathrm{kJ} / \mathrm{mol}}\end{array}

User Discombobulous
by
5.9k points