Answer:
The standard parabolic equation is
![y = 0.25(x +3)^2 -19](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e1onpovkpsy2socmreqraud4yv74bupip9.png)
Explanation:
Here, the vertex of parabola is (h,k) = ( -3,-19)
The points on the given parabola is ( 5,-3)
Now, the general form of the Parabolic Equation is
![y = a(x - h)^2 + k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/10gveno3sbbnzq722x9br6j3ruxza9knw0.png)
(1) Substitute Coordinates (h,k) for the Vertex
![y = a(x - h)^2 + k \implies y = a ( x - (-3)) ^2 + (-19)\\or, y = a( x+3)^2 - 19](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ajqs5cl41ifdny1qrkifvmn1t9d9ikbs0p.png)
(2)Substitute point Coordinates (x,y)
![y = a( x+3)^2 - 19 \implies-3 = a(5+3)^2 -19\\or, -3 = 64 a -19\\\implies 64 a = 16\\or, a = 16/64 = 0.25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mo3tm0zbmrliwas6f2phzblsovix0fosi0.png)
⇒ a =0.25
Substituting the values of (h,k) and a in the standard for, we get,
The standard parabolic equation is
![y = 0.25(x +3)^2 -19](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e1onpovkpsy2socmreqraud4yv74bupip9.png)