Answer:
Explanation:
![(1)/(3)(3x-6)^3+4<13](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nw716oq649k6p0a2p00hfrsy09w7sym9jk.png)
Solving the inequality to have solutions for
![x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k3ozza40nv61jy1offmxaxutrb6y1c3ly5.png)
Subtracting 4 from both sides.
⇒
![(1)/(3)(3x-6)^3+4-4<13-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ve4r84oet5jlesqccx898s9njsol0jjq4m.png)
⇒
![(1)/(3)(3x-6)^3<9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bwoh8uhjujmul7cgg6e9jgv3jt7v3ha82q.png)
Multiplying 3 both sides to remove fraction.
⇒
![3* (1)/(3)(3x-6)^3<9* 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5x0a8650d04iitv63gc1mnv2o9pxie4i6w.png)
⇒
![(3x-6)^3<27](https://img.qammunity.org/2020/formulas/mathematics/middle-school/px9sq77pxuzn48op5mrchaypjjhqeklw7q.png)
Taking cube root both sides to remove the cube.
⇒
![\sqrt[3]{(3x-6)^3}<\sqrt[3]{27}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/twhaib54lsrh276hgtq38yy5kwv9r01jho.png)
⇒
[ ∵
]
Adding 6 to both sides.
⇒
⇒
Dividing both sides by
![3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j9nm6zke2w2yvzr90sfzxxfsj5zwj66fau.png)
⇒
∴