To solve this problem it is necessary to apply the concepts related to stress failure, stress and last module Young.
Critical stress by definition is given as,
![\sigma_c = (K_(IC))/(Y√(\pi a))](https://img.qammunity.org/2020/formulas/physics/college/ryxi6fd2f5kagvms7s1cy50i6mj6inupyy.png)
Where,
Strain fracture toughness
Y = Young's module
a = Length surface crack
Our values are given as,
![K_(IC) = 54.8Mpa](https://img.qammunity.org/2020/formulas/physics/college/qbzr8rfkbinrwavfnwk851t9coaqq57y7r.png)
![Y = 1.11](https://img.qammunity.org/2020/formulas/physics/college/qiondesnw0267pq8yot305824w2q7zc1yq.png)
![a = 0.8*10^(-3)m](https://img.qammunity.org/2020/formulas/physics/college/ol5425clxqzgaoyg3o696w1d5ot1bjc1rz.png)
Replacing in our previous equation we have,
![\sigma_c = \frac{54.8}{(1.11)\sqrt{\pi(0.8*10^(-3))}}](https://img.qammunity.org/2020/formulas/physics/college/uf6a5zyy08axup4p59veemu278ei8lbn2h.png)
![\sigma_c = 984.77Mpa](https://img.qammunity.org/2020/formulas/physics/college/un9oxno0s0d8zhx4ozk0fx2kxta0kubniz.png)
Therefore the critical stress is 984.77Mpa