Answer:
The rock is 3.88 billion years old.
Step-by-step explanation:
Initial mass of the K-40 isotope = x
Final mass of the K-40 isotope = 12% of x = 0.12x
Half life of the K-40 =
=1.27 billion years
Age of the sample = t
Formula used :
![N=N_o* e^(-\lambda t)\\\\\lambda =\frac{0.693}{t_{(1)/(2)}}](https://img.qammunity.org/2020/formulas/chemistry/high-school/g0wka4y73q2tydv9od5ksqdubzu5cjk562.png)
where,
= initial mass of isotope
N = mass of the parent isotope left after the time, (t)
= half life of the isotope
= rate constant
![N=N_o* e^{-((0.693)/(t_(1/2)))* t}](https://img.qammunity.org/2020/formulas/chemistry/college/zrh72gb2puo5bhwge6r4sspz6pgaqhhozn.png)
Now put all the given values in this formula, we get
![0.12x=x* e^{-(\frac{0.693}{1.27 \text{billion years}})* t}](https://img.qammunity.org/2020/formulas/chemistry/college/rl0qgn2ndr57z5r1wsswp95sdudk8q1fw2.png)
![\ln(0.12) * \frac{1.27 \text{billion years}}{0.693}=-t](https://img.qammunity.org/2020/formulas/chemistry/college/trghhmz72wipadg31753cmvx96gna2k0x9.png)
t = 3.88 billion years
The rock is 3.88 billion years old.