Answer:
0.36
Explanation:
Given, a circle with radius,
![r=4 \ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/kr0m6vv74lj9xa49azpfseky4lm1wlfkil.png)
Area of circle =
![\pi r^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/69e2ijkvwardlu2n5rrgtkpqc3b44mcw34.png)
Substitute
![r=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bvxzxyzm9j79om6s2uu3ln5pc4ywsksl8e.png)
Area of whole circle
![=\pi r^2\\=\pi* 4^2\\=16\pi \\=50.2654\ cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/9lwgvtjrwoxo9dfrpbyv8cmztggz7ic29e.png)
Square is inscribed in it whose each side is
![4√(2)\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/82x8e0dw560h4wtaia82lyx54vsxuzr2h6.png)
Area of square
![=side^2\\=(4√(2) )^2\\=16* 2\\=32 \ cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/734pp36iwu1bmz5htvaqma2ilfsl7b3puy.png)
We can see that area of the white circle
= area of the whole circle - area of square
![=50.2654-32\\=18.2654 \ cm^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/g19ozdmricbz63ricfq1zzgd43y5soq5hx.png)
Probability of falling a random point within the white circle
![=(area\ of\ white\ circle)/(area\ of\ whole\ circle)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sufs82ij2zeqkfltmyfwjd9tgeuukr9ur9.png)
![=(18.2654)/(50.2654) \\=0.3633](https://img.qammunity.org/2020/formulas/mathematics/high-school/9bonlnypy2jxyf60t8addg59t2ptyu143y.png)
Rounding to nearest hundredth.
Probability of falling a random point within the white circle would be 0.36