169k views
4 votes
Use the quadratic formula to solve the equation. –x2 + 7x = 8

User Fiter
by
3.8k points

1 Answer

13 votes

Answer:

The solutions are:


x=(7-√(17))/(2),\:x=(7+√(17))/(2)

Explanation:

Given the quadratic equation

-x² + 7x = 8

Solving using the quadratic formula


-x^2+7x=8

Subtract 8 from both sides


-x^2+7x-8=8-8

Simplify


-x^2+7x-8=0

For a quadratic function of the form ax² + bx + c = 0, the solutions are:


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)

For a = -1, b = 7, c = -8


x_(1,\:2)=(-7\pm √(7^2-4\left(-1\right)\left(-8\right)))/(2\left(-1\right))


x_(1,\:2)=(-7\pm \:√(49-32))/(2\left(-1\right))


x_(1,\:2)=(-7\pm √(17))/(2\left(-1\right))

Separate the solutions


x_1=(-7+√(17))/(2\left(-1\right)),\:x_2=(-7-√(17))/(2\left(-1\right))v

solving


x_1=(-7+√(17))/(2\left(-1\right))


=(-7+√(17))/(-2)

Apply the fraction rule:
(-a)/(-b)=(a)/(b)

i.e.
-7+√(17)=-\left(7-√(17)\right)

so


=(7-√(17))/(2)

Similarly solving


x_2=(-7-√(17))/(2\left(-1\right))


=(-7-√(17))/(-2\cdot \:1)

Apply the fraction rule:
(-a)/(-b)=(a)/(b)

i.e.
-7-√(17)=-\left(7+ √(17)\right)


=(7+√(17))/(2)

Therefore, the solutions are:


x=(7-√(17))/(2),\:x=(7+√(17))/(2)

User Sissonb
by
3.9k points