169k views
4 votes
Use the quadratic formula to solve the equation. –x2 + 7x = 8

User Fiter
by
7.5k points

1 Answer

13 votes

Answer:

The solutions are:


x=(7-√(17))/(2),\:x=(7+√(17))/(2)

Explanation:

Given the quadratic equation

-x² + 7x = 8

Solving using the quadratic formula


-x^2+7x=8

Subtract 8 from both sides


-x^2+7x-8=8-8

Simplify


-x^2+7x-8=0

For a quadratic function of the form ax² + bx + c = 0, the solutions are:


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)

For a = -1, b = 7, c = -8


x_(1,\:2)=(-7\pm √(7^2-4\left(-1\right)\left(-8\right)))/(2\left(-1\right))


x_(1,\:2)=(-7\pm \:√(49-32))/(2\left(-1\right))


x_(1,\:2)=(-7\pm √(17))/(2\left(-1\right))

Separate the solutions


x_1=(-7+√(17))/(2\left(-1\right)),\:x_2=(-7-√(17))/(2\left(-1\right))v

solving


x_1=(-7+√(17))/(2\left(-1\right))


=(-7+√(17))/(-2)

Apply the fraction rule:
(-a)/(-b)=(a)/(b)

i.e.
-7+√(17)=-\left(7-√(17)\right)

so


=(7-√(17))/(2)

Similarly solving


x_2=(-7-√(17))/(2\left(-1\right))


=(-7-√(17))/(-2\cdot \:1)

Apply the fraction rule:
(-a)/(-b)=(a)/(b)

i.e.
-7-√(17)=-\left(7+ √(17)\right)


=(7+√(17))/(2)

Therefore, the solutions are:


x=(7-√(17))/(2),\:x=(7+√(17))/(2)

User Sissonb
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories