To solve this exercise it is necessary to apply the kinematic equations of angular motion.
By definition we know that the displacement when there is constant angular velocity is
![\theta= \theta_0 +\omega t](https://img.qammunity.org/2020/formulas/physics/college/q9vvss2b1bplykxi62q9q532v3gu6kph6m.png)
From our given data we know that,
![\omega = 76(rev)/(min)](https://img.qammunity.org/2020/formulas/physics/college/ru2lvciyeyfla8mhdvu8ns0f4g9ibakwil.png)
![\omega = 76(rev)/(min)((2\pi rad)/(1rev))((1 min)/(60s))](https://img.qammunity.org/2020/formulas/physics/college/5p6ohusg7jq2t82hpzv28zopysngrgs1hg.png)
![\omega = 7.958rad/s](https://img.qammunity.org/2020/formulas/physics/college/9nte3gtqu9zmtpiowtp1igfhqmwai1hjlg.png)
Moreover we know that
![\theta_0 = 0.47 rad](https://img.qammunity.org/2020/formulas/physics/college/3a5tieodmtx9iyswjxl3eg4pg1siq2gzt8.png)
Therefore for time t=8.1s we have,
![\theta= \theta_0+ \omega t](https://img.qammunity.org/2020/formulas/physics/college/jxzop9nhuq2tktdcme5low6zxhtg4x02on.png)
![\theta= 0.47+(7.958)(8.1)](https://img.qammunity.org/2020/formulas/physics/college/kluw8z0xiq0xox1vhjwn53hvflpqmuhe72.png)
![\theta = 64.9298rad](https://img.qammunity.org/2020/formulas/physics/college/jovc1jehrapiufwxnmtv5odsinssp4bsl6.png)
That number in revolution is:
![\theta = 64.9298rad((1rev)/(2\pi))](https://img.qammunity.org/2020/formulas/physics/college/g77baa1sm5xff09v1ltvinkml5q82jb97s.png)
![\theta = 15.108 Revolutions](https://img.qammunity.org/2020/formulas/physics/college/2zsquzcvtvnvfks4nir81fmdomyvgzi35c.png)
Here, we see that there are 15 complete revolutions
And 0.108 revolutions i not complete, so the tunable rotation is
![\theta_(net) = 0.108*2\pi=0.216\pi](https://img.qammunity.org/2020/formulas/physics/college/nt2ap1p8q3h0juzk4wtjb3dvb08ual27ov.png)
Therefore the angle of the speck at a time 8.1s is
![0.216\pi](https://img.qammunity.org/2020/formulas/physics/college/du9zieg11q3zc5okzayycxx29hqko9qpjj.png)