Answer:
a)
![0.0299\leq \widehat{p}\leq 0.0640](https://img.qammunity.org/2020/formulas/mathematics/college/u1w1gq6gzy0orgpwi0bpfj3dl61niolrvw.png)
b)Yes
Explanation:
n = 593
x = 28
![\widehat{p}=(x)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/pvl2uyxvgpn3snq9s93516pubs8bstgs2r.png)
![\widehat{p}=(28)/(593)](https://img.qammunity.org/2020/formulas/mathematics/college/gh9ii4nnzv6r35pyx3auhl1ci03kkjs30x.png)
![\widehat{p}=0.047](https://img.qammunity.org/2020/formulas/mathematics/college/gwkxhx5crr781r4ftkozooexxva6i80yeb.png)
Confidence level = 95%
So,
at 95% = 1.96
Formula of confidence interval of one sample proportion:
=
![\widehat{p}-Z_\alpha \sqrt{\frac{\widehat{p}(1-\widehat{p}}{n}}\leq \widehat{p}\leq \widehat{p}+Z_\alpha \sqrt{\frac{\widehat{p}(1-\widehat{p}}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/oinsr7xl04sdjs7vagaxz6wljghdnuznqu.png)
=
![0.047-(1.96)\sqrt{(0.047(1-0.047))/(593)}\leq \widehat{p}\leq 0.047+(1.96)\sqrt{(0.047(1-0.047)/(593)}](https://img.qammunity.org/2020/formulas/mathematics/college/yadio8fijpfcodrdg439xshepcsrr2s70n.png)
=
![0.0299\leq \widehat{p}\leq 0.0640](https://img.qammunity.org/2020/formulas/mathematics/college/u1w1gq6gzy0orgpwi0bpfj3dl61niolrvw.png)
Hence a 95 percent confidence interval for the proportion of all new websites that were anonymous is
![0.0299\leq \widehat{p}\leq 0.0640](https://img.qammunity.org/2020/formulas/mathematics/college/u1w1gq6gzy0orgpwi0bpfj3dl61niolrvw.png)
b) May normality of p be assumed?
Condition for normality : np>10 and np(1-p)>10.
and
![0.047\cdot593(1-0.047)>10](https://img.qammunity.org/2020/formulas/mathematics/college/bus1c1jihhbqmrvoxajtoado4qo3v0ekak.png)
27.871 and 26.561063
Hence p is assumed to be normal since the condition is satisfied