Answer:
B. 4
Explanation:
Given :

The logarithm function can be converted to an exponential function as
can be expressed as
![[a^c=b]](https://img.qammunity.org/2020/formulas/mathematics/high-school/esdt6y75vyq74pt7f8l32yc43i1vx7k3hx.png)
Similarly for the given expression

We can write,

Using property of negative exponents
![[a^(-b)=(1)/(a^b)]](https://img.qammunity.org/2020/formulas/mathematics/high-school/ri532c6xxrv8bfytmnsqcsy0qkgcc7iyac.png)

So we can write that as:

Writing the exponents in radical form as
![a^{(b)/(c)}=(\sqrt[c]{a})^b](https://img.qammunity.org/2020/formulas/mathematics/high-school/hauzaymm7p10vumqxptrx7n3n4lwtofn2b.png)

Taking cube root both sides to remove the cube.
![\sqrt[3]{(√(x))^3}=\sqrt[3]{8}](https://img.qammunity.org/2020/formulas/mathematics/high-school/7vjdhkmxnazr9z0fuehvpi6gp5119d84if.png)

Squaring both sides to remove square root.

∴
