To solve the problem it is necessary to apply the concepts related to the Centripetal Force.
By definition the centripetal force is given by
![F_c = (mv^2)/(R)](https://img.qammunity.org/2020/formulas/physics/middle-school/hqt63ppvz2ycwazwxvkcux37ufsirzomnh.png)
Our values are defined by
![m=0.5Kg\\F_c = 5.88N \\R = 0.145m+1cm = 0.155m\\v = 1.31m/s](https://img.qammunity.org/2020/formulas/physics/college/oy7gn78npf9gewhvykdxplhvyu9n17qlwb.png)
Therefore replacing in the equation we have to,
![F_c = (mv^2)/(R)](https://img.qammunity.org/2020/formulas/physics/middle-school/hqt63ppvz2ycwazwxvkcux37ufsirzomnh.png)
![5.88=(0.5*v^2)/(0.155)](https://img.qammunity.org/2020/formulas/physics/college/lmwivzm9yj6s2w05ezgmwv7dxzi6cvgkso.png)
Re-arrange to find V,
![V=\sqrt{(5.88*0.155)/(0.5)}](https://img.qammunity.org/2020/formulas/physics/college/tq5v2x7vw5yksi17xmmim41ulikw798veb.png)
![V= 1.35m/s](https://img.qammunity.org/2020/formulas/physics/college/syllq63czov1wjn33g7tk6aswyt7vq59jt.png)
Therefore the expected velocity of the spinning mass at the new radius is 1.35m/s