Answer:
1.72 × 10⁵
Step-by-step explanation:
Let's consider the reaction for the solubilization of Mg(OH)₂.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
To find its solubility in pure water we will use an ICE Map. We recognize 3 stages: Initial, Change and Equilibrium and complete each row with the concentration or change in concentration.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0
C +S +2S
E S 2S
We can find the value of the solubility (S) from the solubility product Kps.
![Kps=5.61 * 10^(-11) = [Mg^(2+) ].[OH^(-)]^(2) =S.(2S)^(2) =4S^(3) \\S=2.41 * 10^(-4)](https://img.qammunity.org/2020/formulas/chemistry/college/6awvpia84k7gj5a5p86f7xc7x7ymbrndb9.png)
To calculate the solubility (S') of Mg(OH)₂ in a 0.200 M NaOH solution, we need to take into account the common ion OH⁻ that comes from NaOH. NaOH is a strong electrolyte.
NaOH(aq) ⇒ Na⁺(aq) + OH⁻(aq)
I 0.200 0 0
C -0.200 +0.200 +0.200
E 0 0.200 0.200
The initial concentration of OH⁻ for the solubilization of Mg(OH)₂ will be 0.200 M.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0.200
C +S' +2S'
E S' 0.200 + 2S'
![Kps=5.61 * 10^(-11) = [Mg^(2+) ].[OH^(-)]^(2)=(S').(0.200+2S')^(2) \\](https://img.qammunity.org/2020/formulas/chemistry/college/zkf4tgirgweidkpayu5d0gqknnr8u038k9.png)
In the term (0.200 + 2S'), 2S' is very small so it can be omitted to simplify calculations. Then, S' = 1.40 × 10⁻⁹
The ratio S/S' is 2.41 × 10⁻⁴/1.40 × 10⁻⁹ = 1.72 × 10⁵.