Answer:
3 days
Step-by-step explanation:
For each isotope, we must use the integrated rate law for a first order reaction to get the rate constant k, then use that to calculate the half-life t_½.
1. Isotope A
The integrated rate law for a first-order decay is
ln(N₀/N) = kt
Data:
N₀ = 100 %
N = 10 %
t = 33 da
(a) Calculate the value of k
![\begin{array}{rcl}\ln\left ((N_(0))/(N)\right ) & = & kt\\\\\ln\left ((100)/(10)\right ) & = & k* 33\\\\\ln10 & = & 33k\\2.303 & = & 33k\\k & = & \text{0.0698 da}^(-1)\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/high-school/x33u66ue1cizaebcc1utluuq64ouo0lz5y.png)
(b) Calculate the half-life
![\begin{array}{rcl}t_{(1)/(2)} & = & (\ln 2)/(k )\\\\ & = & \frac{\ln 2}{ \text{0.0698 da}^(-1) }\\\\& = & \textbf{9.9 da}\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/high-school/xhr4j61us6poqeq0hwm7e116c96f0lgwt7.png)
2. Isotope B
Data:
N₀ = 100 %
N = 10 %
t = 43 da
(a) Calculate the value of k
![\begin{array}{rcl}\ln\left ((N_(0))/(N)\right ) & = & kt\\\\\ln\left ((100)/(10)\right ) & = & k* 43\\\\\ln10 & = & 43k\\2.303 & = &43k\\k & = & \text{0.0535 da}^(-1)\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/high-school/xrrni0ht0bifmrc1leo4aexi8ki0aold2j.png)
(b) Calculate the half-life
![\begin{array}{rcl}t_{(1)/(2)} & = & (\ln 2)/(k )\\\\ & = & \frac{\ln 2}{ \text{0.0535 da}^(-1) } \\\\& = & \textbf{12.9 da}\\\end{array}](https://img.qammunity.org/2020/formulas/chemistry/high-school/vqxtxmcvxogm3broqza69twp15o58ipq42.png)
3. Calculate the difference in half-lives
Difference = 12.9 da - 9.9 da ≈ 3 da
The graphs below show the decay curves for isotopes A and B. The half-lives are approximately 10 da and 13 da, a difference of 3 da.