Answer:
![(\hat{p})\sim N(0.10,\ 0.017)](https://img.qammunity.org/2020/formulas/mathematics/college/mqom9ed4xovbfnt4mhkss6s6pem5ox4slu.png)
Explanation:
Sampling distribution of the sample proportion
:
![(\hat{p})\sim N(p,\ \sqrt{(p(1-p))/(n)})](https://img.qammunity.org/2020/formulas/mathematics/college/9e0e9yadoqzo87ze9ipuef42t6nczbabm1.png)
The sampling distribution of the sample proportion
has mean =
and standard deviation =
.
Given : The proportion of left handed people in the population is about 0.10.
i.e. p=0.10
sample size : n= 300
Then , the sampling distribution of the sample proportion
will be :-
![(\hat{p})\sim N(0.10,\ \sqrt{(0.10(1-0.10))/(300)})](https://img.qammunity.org/2020/formulas/mathematics/college/hhjztm5bejlklnrp0u14u63w7grw0zi48v.png)
![(\hat{p})\sim N(0.10,\ √(0.0003))](https://img.qammunity.org/2020/formulas/mathematics/college/bjk2n00ezsisf7ibfc8cfqgn8hcs6sa1g9.png)
(approx)
Hence, the sampling distribution of the sample proportion
is
![(\hat{p})\sim N(0.10,\ 0.017)](https://img.qammunity.org/2020/formulas/mathematics/college/mqom9ed4xovbfnt4mhkss6s6pem5ox4slu.png)