97.5k views
3 votes
A particle moving in a planar force field has a position vector x that satisfies x'=Ax. The 2×2 matrix A has eigenvalues 4 and 2, with corresponding eigenvectors v1=[ −3 1 ] and v2=[ −1 1 ]. Find the position of the particle at time t, assuming that x(0)=[ −6 1 ].

User Rhythmo
by
6.7k points

1 Answer

4 votes

Answer:

The required position of the particle at time t is:
x(t)=\begin{bmatrix}-7.5e^(4t)+1.5e^(2t)\\2.5e^(4t)-1.5e^(2t)\end{bmatrix}

Explanation:

Consider the provided matrix.


v_1=\begin{bmatrix}-3\\1 \end{bmatrix}


v_2=\begin{bmatrix}-1\\1 \end{bmatrix}


\lambda_1=4, \lambda_2=2

The general solution of the equation
x'=Ax


x(t)=c_1v_1e^(\lambda_1t)+c_2v_2e^(\lambda_2t)

Substitute the respective values we get:


x(t)=c_1\begin{bmatrix}-3\\1 \end{bmatrix}e^(4t)+c_2\begin{bmatrix}-1\\1 \end{bmatrix}e^(2t)


x(t)=\begin{bmatrix}-3c_1e^(4t)-c_2e^(2t)\\c_1e^(4t)+c_2e^(2t) \end{bmatrix}

Substitute initial condition
x(0)=\begin{bmatrix}-6\\1 \end{bmatrix}


\begin{bmatrix}-3c_1-c_2\\c_1+c_2 \end{bmatrix}=\begin{bmatrix}-6\\1 \end{bmatrix}

Reduce matrix to reduced row echelon form.


\begin{bmatrix} 1& 0 & (5)/(2)\\ 0& 1 & (-3)/(2)\end{bmatrix}

Therefore,
c_1=2.5,c_2=1.5

Thus, the general solution of the equation
x'=Ax


x(t)=2.5\begin{bmatrix}-3\\1\end{bmatrix}e^(4t)-1.5\begin{bmatrix}-1\\1 \end{bmatrix}e^(2t)


x(t)=\begin{bmatrix}-7.5e^(4t)+1.5e^(2t)\\2.5e^(4t)-1.5e^(2t)\end{bmatrix}

The required position of the particle at time t is:
x(t)=\begin{bmatrix}-7.5e^(4t)+1.5e^(2t)\\2.5e^(4t)-1.5e^(2t)\end{bmatrix}

User Mahdi Astanei
by
6.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.