13.1k views
0 votes
A golfer hits a ball at an angle of 12 degrees above horizontal. The velocity of the ball is 37 m/s. What is the horizontal distance the ball travels in 2 seconds? A. 9.6 m B. 36 m C. 72 m D. 74 m

User Eike Thies
by
5.2k points

1 Answer

6 votes

72 m is the horizontal distance the travels.

Option: C

Step-by-step explanation:

The units to express the horizontal and vertical distances are meters (m). The "horizontal" and "vertical" velocities are expressed in "meters per second" (m/s).

Horizontal distance = (initial horizontal velocity)(time)

We can now get the range x from the horizontal component of velocity


x=v_(x o) * t equation (1)


\mathrm{v}_{\mathrm{xo}}=\text { initial horizontal velocity }(\mathrm{m} / \mathrm{s})

x = horizontal distance (m)

t = time (s)


\mathrm{v}_{\mathrm{x} \mathrm{o}}=\mathrm{v} \cos \theta

We know that, V = 37 m/s, θ = 12 degree and t = 2 seconds.

To find,
\mathrm{v}_{\mathrm{x} \mathrm{o}}=\mathrm{v} \cos \theta


\mathrm{V}_{\mathrm{x} \mathrm{o}}=37 * \cos 12


\mathrm{V}_{\mathrm{x} \mathrm{o}}=37 * 0.974


\mathrm{V}_{\mathrm{x} \mathrm{o}}=36.038


\mathrm{Now}, \mathrm{x}=\mathrm{v}_{\mathrm{xot}}


x=36.038 * 2

x = 72.076 m ~ 72 m

x = 72 m

The horizontal distance is 72 m.

User Pravin Yadav
by
5.9k points