Answer:
Angular acceleration,
![\alpha =20.32\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/56z6wj2mfnwryaovhbxt9z4ns8lvxtyrju.png)
Step-by-step explanation:
It is given that,
Displacement of the rotating wheel,
![\theta=37\ rev=232.47\ radian](https://img.qammunity.org/2020/formulas/physics/college/utr9kh09j9up6v2aawfa6vvokcmicrdjbg.png)
Time taken, t = 2.9 s
Initial speed of the wheel,
![\omega_i=0](https://img.qammunity.org/2020/formulas/physics/high-school/dtbtap6okdzswcbmxzp4aeytm45t9sotwj.png)
Final speed of the wheel,
![\omega_f=97.2\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/g7ystb1i5fo1g5o052o074h0jlkxn3vf2u.png)
Let
is the angular acceleration of the wheel. Using the third equation of kinematics to find it as :
![\alpha=(\omega_f^2-\omega_i^2)/(2\theta)](https://img.qammunity.org/2020/formulas/physics/college/3nc3denr7u18bsg7ru25hv3slfhsj6wqjt.png)
![\alpha=((97.2)^2)/(2* 232.47)](https://img.qammunity.org/2020/formulas/physics/college/89k43mxjl7n19kt9d97fg9uiduwqgy3uul.png)
![\alpha =20.32\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/56z6wj2mfnwryaovhbxt9z4ns8lvxtyrju.png)
So, the angular acceleration of the wheel is
. Hence, this is the required solution.