Answer:
Speed,
![v=1.86* 10^8\ m/s](https://img.qammunity.org/2020/formulas/physics/college/rwffkvvbl5l9w1fv2ek6squn742ydqx44o.png)
Step-by-step explanation:
It is given that,
A light wave is described by the following function as :
.....(1)
The general equation of wave is given by :
........(2)
On comparing equation (1) and (2)
![k=(1.57* 10^7)](https://img.qammunity.org/2020/formulas/physics/college/8nxbj73mc3goagryapiebr32rjalsbwxwr.png)
![(2\pi)/(\lambda)=(1.57* 10^7)](https://img.qammunity.org/2020/formulas/physics/college/5yryw16bh67qk5krb4lbj7et1klj9h400k.png)
![\lambda=(2\pi)/((1.57* 10^7))](https://img.qammunity.org/2020/formulas/physics/college/4wwebui1ndsuq7ma7zq4oqu2uq7dhy6rk0.png)
Wavelength,
![\lambda=4.002* 10^(-7)\ m](https://img.qammunity.org/2020/formulas/physics/college/6tp9twiw437ceg5jeixex79rp1qegbutf5.png)
![\omega=(2.93* 10^(15))](https://img.qammunity.org/2020/formulas/physics/college/miy1twb20gi699pyw4qrnfy3exo5bvx5vt.png)
![(2\pi)/(T)=(2.93* 10^(15))](https://img.qammunity.org/2020/formulas/physics/college/t0tz0ibgm5yujywe5a8m1q3n7917khnmo4.png)
![(1)/(T)=((2.93* 10^(15)))/(2\pi)](https://img.qammunity.org/2020/formulas/physics/college/wswim587iq9uj89s886i7e5ts4qqnp2qtw.png)
Frequency,
![f=4.66* 10^(14)\ Hz](https://img.qammunity.org/2020/formulas/physics/college/9jdwndrntv2lh252na0sh74ehdy3sxcyeg.png)
Let v is the speed of the light wave. It is given by :
![v=f* \lambda](https://img.qammunity.org/2020/formulas/physics/college/46mjvyrfm85si9wcfzkms2zzno9mgoxpke.png)
![v=4.66* 10^(14)\ Hz* 4.002* 10^(-7)\ m](https://img.qammunity.org/2020/formulas/physics/college/duijcud12rs6ejpvjcu7oxbupgqowauciu.png)
![v=1.86* 10^8\ m/s](https://img.qammunity.org/2020/formulas/physics/college/rwffkvvbl5l9w1fv2ek6squn742ydqx44o.png)
So, the speed of the light wave is
. Hence, this is the required solution.